
Wen-Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 2022, 7, 32.	6.0	19
2	Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in <i>Leishmania</i> . MSphere, 2022, 7, .	2.9	4
3	Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Neglected Tropical Diseases, 2021, 15, e0009079.	3.0	11
4	Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Communications Biology, 2021, 4, 929.	4.4	30
5	The Phosphoenolpyruvate Carboxykinase Is a Key Metabolic Enzyme and Critical Virulence Factor of <i>Leishmania major</i> . Journal of Immunology, 2021, 206, 1013-1026.	0.8	3
6	A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications, 2020, 11, 3461.	12.8	72
7	Sensing Host Arginine Is Essential for <i>Leishmania</i> Parasites' Intracellular Development. MBio, 2020, 11, .	4.1	17
8	Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods in Molecular Biology, 2020, 2116, 199-224.	0.9	18
9	Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in <i>Leishmania</i> . MSphere, 2019, 4, .	2.9	34
10	A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Scientific Reports, 2018, 8, 16549.	3.3	41
11	Development of a sandwich ELISA to detect Leishmania 40S ribosomal protein S12 antigen from blood samples of visceral leishmaniasis patients. BMC Infectious Diseases, 2018, 18, 500.	2.9	16
12	Optimized CRISPR-Cas9 Genome Editing for <i>Leishmania</i> and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. MSphere, 2017, 2, .	2.9	66
13	CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. MBio, 2015, 6, e00861.	4.1	168
14	Screening Leishmania donovani Complex-Specific Genes Required for Visceral Disease. Methods in Molecular Biology, 2015, 1201, 339-361.	0.9	4
15	Genetic Analysis of Leishmania donovani Tropism Using a Naturally Attenuated Cutaneous Strain. PLoS Pathogens, 2014, 10, e1004244.	4.7	97
16	Determinants for the Development of Visceral Leishmaniasis Disease. PLoS Pathogens, 2013, 9, e1003053.	4.7	175
17	Role of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Visceral Organ Infection by Leishmania donovani. Eukaryotic Cell, 2013, 12, 70-77.	3.4	21
18	Deletion of an ATP-binding cassette protein subfamily C transporter in Leishmania donovani results in increased virulence. Molecular and Biochemical Parasitology, 2012, 185, 165-169.	1.1	8

Wen-Wei Zhang

#	Article	IF	CITATIONS
19	Expression of a Leishmania donovani nucleotide sugar transporter in Leishmania major enhances survival in visceral organs. Experimental Parasitology, 2011, 129, 337-345.	1.2	15
20	Screening <i>Leishmania donovani</i> â€specific genes required for visceral infection. Molecular Microbiology, 2010, 77, 505-517.	2.5	42
21	Immunization with a Toll-Like Receptor 7 and/or 8 Agonist Vaccine Adjuvant Increases Protective Immunity against <i>Leishmania major</i> in BALB/c Mice. Infection and Immunity, 2008, 76, 3777-3783.	2.2	94
22	A Genomic-Based Approach Combining In Vivo Selection in Mice to Identify a Novel Virulence Gene in Leishmania. PLoS Neglected Tropical Diseases, 2008, 2, e248.	3.0	25
23	Development of a Genetic Assay to Distinguish between Leishmania viannia Species on the Basis of Isoenzyme Differences. Clinical Infectious Diseases, 2006, 42, 801-809.	5.8	34
24	In vivo selection for Leishmania donovani miniexon genes that increase virulence in Leishmania majorâ€. Molecular Microbiology, 2004, 54, 1051-1062.	2.5	14
25	Comparison of the A2 Gene Locus in Leishmania donovani and Leishmania major and Its Control over Cutaneous Infection. Journal of Biological Chemistry, 2003, 278, 35508-35515.	3.4	99
26	Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Molecular Microbiology, 2001, 39, 935-948.	2.5	111
27	The expression of biologically active human p53 inLeishmaniacells: a novel eukaryotic system to produce recombinant proteins. Nucleic Acids Research, 1995, 23, 4073-4080.	14.5	47