Cécile A C M Van Els

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8136574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	6.5	119
2	mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours: a prospective, multicentre, non-inferiority trial. Lancet Oncology, The, 2021, 22, 1681-1691.	5.1	118
3	Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: a cohort study. Lancet Rheumatology, The, 2022, 4, e338-e350.	2.2	88
4	Extended O-GlcNAc on HLA Class-I-Bound Peptides. Journal of the American Chemical Society, 2015, 137, 10922-10925.	6.6	72
5	A single naturally processed measles virus peptide fully dominates the HLA-A*0201-associated peptide display and is mutated at its anchor position in persistent viral strains. European Journal of Immunology, 2000, 30, 1172-1181.	1.6	68
6	PERISCOPE: road towards effective control of pertussis. Lancet Infectious Diseases, The, 2019, 19, e179-e186.	4.6	67
7	Comprehensive Analysis of the Naturally Processed Peptide Repertoire: Differences between HLA-A and B in the Immunopeptidome. PLoS ONE, 2015, 10, e0136417.	1.1	55
8	COVID-19 vaccination: the VOICE for patients with cancer. Nature Medicine, 2021, 27, 568-569.	15.2	53
9	Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Frontiers in Immunology, 2020, 11, 166.	2.2	39
10	Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Frontiers in Immunology, 2014, 5, 361.	2.2	35
11	Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection. Vaccine, 2016, 34, 4166-4171.	1.7	35
12	Resurgence of pertussis calls for re-evaluation of pertussis animal models. Expert Review of Vaccines, 2012, 11, 1121-1137.	2.0	29
13	Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07. Journal of Proteome Research, 2017, 16, 34-44.	1.8	29
14	Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Frontiers in Microbiology, 2020, 11, 2108.	1.5	27
15	Mumps Serum Antibody Levels Before and After an Outbreak to Assess Infection and Immunity in Vaccinated Students. Open Forum Infectious Diseases, 2014, 1, ofu101.	0.4	26
16	Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation. Frontiers in Immunology, 2015, 6, 546.	2.2	23
17	Identification of Pertussis-Specific Effector Memory T Cells in Preschool Children. Vaccine Journal, 2015, 22, 561-569.	3.2	23
18	Mumps infection but not childhood vaccination induces persistent polyfunctional CD8 + T-cell memory. Journal of Allergy and Clinical Immunology, 2018, 141, 1908-1911.e12.	1.5	21

CéCILE A C M VAN ELS

#	Article	IF	CITATIONS
19	Bordetella pertussis Naturally Occurring Isolates with Altered Lipooligosaccharide Structure Fail To Fully Mature Human Dendritic Cells. Infection and Immunity, 2015, 83, 227-238.	1.0	18
20	Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4+ T cell responses through TLR4 ligation. Scientific Reports, 2016, 6, 25064.	1.6	18
21	Immunogenicity after second and third mRNA-1273 vaccination doses in patients receiving chemotherapy, immunotherapy, or both for solid tumours. Lancet Oncology, The, 2022, 23, 833-835.	5.1	18
22	Fast vaccine design and development based on correlates of protection (COPs): Influenza as a trendsetter. Human Vaccines and Immunotherapeutics, 2014, 10, 1935-1948.	1.4	16
23	Differential B-Cell Memory Around the 11-Month Booster in Children Vaccinated With a 10- or 13-Valent Pneumococcal Conjugate Vaccine. Clinical Infectious Diseases, 2015, 61, 342-349.	2.9	16
24	Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4 ⁺ T Cells. Infection and Immunity, 2019, 87, .	1.0	13
25	Loss of Multi-Epitope Specificity in Memory CD4+ T Cell Responses to B. Pertussis with Age. PLoS ONE, 2013, 8, e83583.	1.1	11
26	Vaccine antigens modulate the innate response of monocytes to Al(OH)3. PLoS ONE, 2018, 13, e0197885.	1.1	11
27	The Human CD4 ⁺ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. Journal of Virology, 2019, 93, .	1.5	11
28	Uncovering Distinct Primary Vaccination-Dependent Profiles in Human Bordetella pertussis Specific CD4+ T-Cell Responses Using a Novel Whole Blood Assay. Vaccines, 2020, 8, 225.	2.1	11
29	Association of Vitamin D Receptor Polymorphism with Susceptibility to Symptomatic Pertussis. PLoS ONE, 2016, 11, e0149576.	1.1	9
30	Development of an IFNÎ ³ ELISPOT for the analysis of the human T cell response against mumps virus. Journal of Immunological Methods, 2016, 431, 52-59.	0.6	8
31	Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. Advances in Experimental Medicine and Biology, 2019, 1183, 81-98.	0.8	8
32	Identification of Naturally Processed Mumps Virus Epitopes by Mass Spectrometry: Confirmation of Multiple CD8+ T-Cell Responses in Mumps Patients. Journal of Infectious Diseases, 2019, 221, 474-482.	1.9	8
33	Vaccines to Protect Older Adults against Pneumococcal Disease. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 113-130.	2.6	7
34	Immunodominance in T cell responses elicited against different domains of detoxified pneumolysin PlyD1. PLoS ONE, 2018, 13, e0193650.	1.1	5
35	Novel mumps virus epitopes reveal robust cytotoxic T cell responses after natural infection but not after vaccination. Scientific Reports, 2021, 11, 13664.	1.6	5
36	Genetic Analysis Reveals Differences in CD8+ T Cell Epitope Regions That May Impact Cross-Reactivity of Vaccine-Induced T Cells against Wild-Type Mumps Viruses. Vaccines, 2021, 9, 699.	2.1	4

#	Article	IF	CITATIONS
37	Reduced Bordetella pertussis-specific CD4+ T-Cell Responses at Older Age. Frontiers in Aging, 2022, 2, .	1.2	3
38	Longitudinal Characterization of the Mumps-Specific HLA-A2 Restricted T-Cell Response after Mumps Virus Infection. Vaccines, 2021, 9, 1431.	2.1	1