Viktor Sevastianov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8136309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Results of biomedical investigations of PHB and PHB/PHV fibers. Biochemical Engineering Journal, 2003, 16, 125-133.	1.8	134
2	Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1029-1042.	1.9	96
3	Influence of Endogenous Albumin Binding on Blood-Material Interactions. Annals of the New York Academy of Sciences, 1987, 516, 78-95.	1.8	60
4	3D printing of PLGA scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2017, 105, 104-109.	2.1	52
5	The activation of the complement system by polymer materials and their blood compatibility. Journal of Biomedical Materials Research Part B, 1984, 18, 969-978.	3.0	47
6	<i>In vitro</i> and <i>in vivo</i> biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 96A, 125-131.	2.1	44
7	Changes in Protein Adsorption on Self-Assembled Monolayers with Monolayer Order:Â Comparison of Human Serum Albumin and Human Gamma Globulin. Langmuir, 2001, 17, 7645-7651.	1.6	43
8	Three-dimensional scaffold made from recombinant spider silk protein for tissue engineering. Doklady Biochemistry and Biophysics, 2009, 426, 127-130.	0.3	40
9	Advances in noctilucent cloud research in the space era. Pure and Applied Geophysics, 1980, 118, 528-580.	0.8	32
10	The model of continuous heterogeneity of protein—surface interactions for human serum albumin and human immunoglobulin G adsorption onto quartz. Journal of Colloid and Interface Science, 1991, 145, 191-206.	5.0	21
11	Competitive adsorption of human serum albumin and gamma-globulin from a binary protein mixture onto hexadecyltrichlorosilane coated glass. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 151-161.	1.9	19
12	In VitroAssessment of the Hemocompatible Properties of Polymers. Artificial Organs, 1983, 7, 126-133.	1.0	17
13	Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation. High Energy Chemistry, 2006, 40, 79-85.	0.2	17
14	The effect of cells on biomaterial calcification: Experiments within vivo diffusion chambers. Journal of Biomedical Materials Research Part B, 1991, 25, 277-280.	3.0	13
15	Biodegradable matrices from regenerated silk of Bombix mori. Doklady Biochemistry and Biophysics, 2010, 433, 201-204.	0.3	12
16	The cellâ€engineered construct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissueâ€derived mesenchymal stromal cells (in vitro study). Journal of Biomedical Materials Research - Part A, 2015, 103, 463-470.	2.1	11
17	Fatigue and Hemocompatibility of Polymer Materials. Artificial Organs, 1987, 11, 20-25.	1.0	9
18	The Interaction of Heparinized Biomaterials with Human Serum, Albumin, Fibrinogen, Antithrombin III, and Platelets. Artificial Organs, 1991, 15, 381-385.	1.0	9

VIKTOR SEVASTIANOV

#	Article	IF	CITATIONS
19	Comparative Analysis of Human Serum Albumin Adsorption and Complement Activation for Intraocular Lenses. Artificial Organs, 2001, 25, 453-458.	1.0	8
20	Heat capacity and physical transitions in collagen and solubility of water in it. Russian Journal of General Chemistry, 2006, 76, 1363-1367.	0.3	8
21	Development of an HPLC-UV Method for Quantitative Determination of Acetylsalicylic Acid and Its Main Metabolite. Pharmaceutical Chemistry Journal, 2018, 52, 151-155.	0.3	8
22	Adsorption-desorption processes of proteins at solid/blood interfaces. Journal of Colloid and Interface Science, 1986, 112, 279-289.	5.0	7
23	Formation of Tissue-Engineered Construct of Human Cartilage Tissue in a Flow-Through Bioreactor. Bulletin of Experimental Biology and Medicine, 2017, 164, 269-273.	0.3	7
24	Carbon Coated Polyethylene: Effect of Surface Energetics and Topography on Human Platelet Adhesion. ASAIO Journal, 2001, 47, 11-17.	0.9	6
25	Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromolecular Research, 2015, 23, 205-213.	1.0	6
26	Plasmochemical modification of fluorocarbon polymers for creation of new hemocompatible materials. Russian Journal of General Chemistry, 2009, 79, 596-605.	0.3	5
27	Supercritical fluid fabrication of components for a sustained-release injectable risperidone dose form. Russian Journal of Physical Chemistry B, 2016, 10, 1123-1130.	0.2	5
28	Mathematical model of static platelet adhesion on a solid surface. Journal of Biomedical Materials Research Part B, 2003, 67A, 582-590.	3.0	4
29	Micro-and nanostructural characteristics of 3D porous carriers ElastoPHB®-3D. Bulletin of Experimental Biology and Medicine, 2008, 145, 371-373.	0.3	4
30	Simulation of the development of the mosaic surface structures in polyethylene. Polymer Science - Series B, 2009, 51, 367-376.	0.3	4
31	TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 152-162.	0.1	3
32	Technology features of decellularization of human liver fragments as tissue-specific fine-grained matrix for cell-engineering liver construction. Vestnik Transplantologii I Iskusstvennykh Organov, 2018, 19, 70-77.	0.1	3
33	TISSUE ENGINEERING AND REGENERATIVE MEDICINE TECHNOLOGIES IN THE TREATMENT OF ARTICULAR CARTILAGE DEFECTS. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 18, 102-122.	0.1	3
34	Effect of silicone rubber surface on the calcium balance of human serum. Journal of Biomedical Materials Research Part B, 1991, 25, 459-465.	3.0	2
35	Fabrication of the Components for a Sustained-Release Injectable Dosage Form of Acetylsalicylic Acid Using Supercritical Carbon Dioxide. Russian Journal of Physical Chemistry B, 2017, 11, 1056-1060. 	0.2	2
36	SUPERCRITICAL FLUID TREATMENT OF THREE-DIMENSIONAL HYDROGEL MATRICES, COMPOSED OF CHITOSAN DERIVATIVES. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 85-93.	0.1	2

#	Article	IF	CITATIONS
37	PROSPECTS OF APPLICATION OF TISSUE-ENGINEERED PANCREATIC CONSTRUCTS IN THE TREATMENT OF TYPE 1 DIABETES. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 18, 133-145.	0.1	2
38	Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration ofÂdamaged liver (experimental model of acute liver failure). Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 19, 78-89.	0.1	2
39	Biomedical materials research in the USSR. Journal of Biomedical Materials Research Part B, 1991, 25, 255-265.	3.0	1
40	ElastoPHB® Membrane Systems with Immobilized Bone Marrow Stromal Cells Optimize Conditions for Regeneration of Damaged Tissue. Bulletin of Experimental Biology and Medicine, 2005, 140, 132-137.	0.3	1
41	Development and Validation of a Procedure for Acyzole Determination in Whole Human Blood. Pharmaceutical Chemistry Journal, 2014, 48, 298-301.	0.3	1
42	CREATING A PROLONGED FORM OF ACETYLSALICYLIC ACID: AN EXPERIMENTAL APPROACH. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 22-31.	0.1	1
43	INFLUENCE OF BONE MARROW MSCs ON THE DEVELOPMENT OF POSTTRANSPLANT CHANGES IN KIDNES. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 45-52.	0.1	1
44	Application of tissue engineering technology for formation of human articular cartilage in perfusion bioreactor. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 19, 81-92.	0.1	1
45	Determination of acysole in whole blood by high-performance liquid chromatography. Journal of Analytical Chemistry, 2014, 69, 800-804.	0.4	0
46	Development and Validation of an HPLC-UV Method for Anilocaine Determination in Blood Plasma. Pharmaceutical Chemistry Journal, 2018, 52, 166-170.	0.3	0
47	IDENTIFICATION OF ISLET CAPACITY IN DONOR'S PANCREAS USING IMMUNOMORPHOLOGICAL ANALYSIS. Vestnik Transplantologii I Iskusstvennykh Organov, 2016, 18, 32-37.	0.1	0
48	Morphological analysis of isolated rat pancreatic islets cultured under standard culture technique and with biopolymer microstructured collagen‑containing hydrogel. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 19, 90-97.	0.1	0
49	In situ crosslinkable hydrogels for engineered cellular microenvironments. Vestnik Transplantologii I Iskusstvennykh Organov, 2017, 19, 53-64.	0.1	0
50	Specific efficiency of microemulsion matrix transdermal delivery system of insulin (experimental) Tj ETQq0 0 0 rgl	BT/Qverlo	ock ₀ 10 Tf 50

E 51 N Is	Experience of organizing and management of experimental researches on animals in V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs. Vestnik Transplantologii I Skusstvennykh Organov, 2018, 19, 104-112.	0.1	0	
-----------------	--	-----	---	--