Lanying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8136058/publications.pdf Version: 2024-02-01

		147566	214527
122	3,247	31	47
papers	citations	h-index	g-index
122	122	122	1844
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A temperature and electric field-responsive flexible smart film with full broadband optical modulation. Materials Horizons, 2017, 4, 878-884.	6.4	123
2	Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 2942-2947.	4.0	119
3	Asymmetric Tunable Photonic Bandgaps in Selfâ€Organized 3D Nanostructure of Polymerâ€Stabilized Blue Phase I Modulated by Voltage Polarity. Advanced Functional Materials, 2017, 27, 1702261.	7.8	117
4	A roll-to-roll process for multi-responsive soft-matter composite films containing Cs _x WO ₃ nanorods for energy-efficient smart window applications. Nanoscale Horizons, 2017, 2, 319-325.	4.1	111
5	Nearâ€Infrared Photodriven Selfâ€Sustained Oscillation of Liquidâ€Crystalline Network Film with Predesignated Polydopamine Coating. Advanced Materials, 2020, 32, e1906319.	11.1	111
6	Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules, 2020, 25, 5510.	1.7	84
7	A novel soft matter composite material for energy-saving smart windows: from preparation to device application. Journal of Materials Chemistry A, 2015, 3, 10738-10746.	5.2	64
8	Humidityâ€Responsive Liquid Crystalline Network Actuator Showing Synergistic Fluorescence Color Change Enabled by Aggregation Induced Emission Luminogen. Advanced Functional Materials, 2021, 31, 2010578.	7.8	64
9	Dual-Band Modulation of Visible and Near-Infrared Light Transmittance in an All-Solution-Processed Hybrid Micro–Nano Composite Film. ACS Applied Materials & Interfaces, 2017, 9, 40810-40819.	4.0	62
10	Broadband Reflection in Polymerâ€ 5 tabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angewandte Chemie - International Edition, 2019, 58, 6698-6702.	7.2	62
11	Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications. Journal of Materials Chemistry C, 2018, 6, 7054-7062.	2.7	58
12	Multi-shape-memory effects in a wavelength-selective multicomposite. Journal of Materials Chemistry A, 2015, 3, 13953-13961.	5.2	57
13	Stimuliâ€Directed Dynamic Reconfiguration in Selfâ€Organized Helical Superstructures Enabled by Chemical Kinetics of Chiral Molecular Motors. Advanced Science, 2018, 5, 1700613.	5.6	55
14	Electrically switchable light transmittance of epoxy-mercaptan polymer/nematic liquid crystal composites with controllable microstructures. Polymer, 2019, 160, 53-64.	1.8	52
15	A facile route towards controllable electric-optical performance of polymer-dispersed liquid crystal via the implantation of liquid crystalline epoxy network in conventional resin. Polymer, 2019, 167, 67-77.	1.8	49
16	Humidityâ€Responsive Blue Phase Liquidâ€Crystalline Film with Reconfigurable and Tailored Visual Signals. Advanced Functional Materials, 2020, 30, 2004610.	7.8	49
17	Lightâ€Driven Liquid Crystalline Networks and Soft Actuators with Degreeâ€ofâ€Freedomâ€Controlled Molecular Motors. Advanced Functional Materials, 2020, 30, 2000252.	7.8	49
18	SnS ₂ Nanosheets Anchored on Nitrogen and Sulfur Co-Doped MXene Sheets for High-Performance Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 17668-17676.	4.0	49

#	Article	IF	CITATIONS
19	Humidityâ€Induced Simultaneous Visible and Fluorescence Photonic Patterns Enabled by Integration of Covalent Bonds and Ionic Crosslinks. Advanced Functional Materials, 2021, 31, 2106419.	7.8	45
20	Optical intensity-driven reversible photonic bandgaps in self-organized helical superstructures with handedness inversion. Journal of Materials Chemistry C, 2017, 5, 3678-3683.	2.7	44
21	Multiple Anti-Counterfeiting Composite Film Based on Cholesteric Liquid Crystal and QD Materials. ACS Applied Materials & Interfaces, 2021, 13, 1424-1430.	4.0	43
22	Reversibly and Irreversibly Humidityâ€Responsive Motion of Liquid Crystalline Network Gated by SO ₂ Gas. Advanced Functional Materials, 2019, 29, 1900013.	7.8	40
23	A study on the polymer structures and electro-optical properties of epoxy-mercaptan-based polymer dispersed liquid crystal films. Liquid Crystals, 2019, 46, 1718-1726.	0.9	40
24	Studies on the electro-optical and the light-scattering properties of PDLC films with the size gradient of the LC droplets. Liquid Crystals, 2015, 42, 390-396.	0.9	38
25	The regulation of polymer structures and electro-optical properties of epoxy-mercaptan-based phase separated liquid crystals / polymer composites. Polymer, 2017, 127, 1-7.	1.8	38
26	Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly. Nature Communications, 2021, 12, 1440.	5.8	38
27	Effects of the fluorinated liquid crystal molecules on the electro-optical properties of polymer dispersed liquid crystal films. Liquid Crystals, 2017, 44, 2301-2310.	0.9	37
28	Photothermal effect of azopyridine compounds and their applications. RSC Advances, 2015, 5, 4675-4680.	1.7	36
29	Effects of crosslinking agent/diluents/thiol on morphology of the polymer matrix and electro-optical properties of polymer-dispersed liquid crystal. Liquid Crystals, 2018, 45, 728-735.	0.9	36
30	Synthesis and Properties of a Series of Mesogen-Jacketed Liquid Crystalline Polymers with Polysiloxane Backbones. Macromolecules, 2010, 43, 6024-6032.	2.2	35
31	A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Advances, 2018, 8, 21690-21698.	1.7	35
32	Biasâ€Polarity Dependent Bidirectional Modulation of Photonic Bandgap in a Nanoengineered 3D Blue Phase Polymer Scaffold for Tunable Laser Application. Advanced Optical Materials, 2018, 6, 1800409.	3.6	34
33	Lightâ€Driven Selfâ€Oscillating Behavior of Liquidâ€Crystalline Networks Triggered by Dynamic Isomerization of Molecular Motors. Advanced Functional Materials, 2021, 31, 2103311.	7.8	32
34	Luminescence Enhancement, Encapsulation, and Patterning of Quantum Dots Toward Display Applications. Advanced Functional Materials, 2022, 32, .	7.8	32
35	Freestanding Helical Nanostructured Chiroâ€Photonic Crystal Film and Anticounterfeiting Label Enabled by a Cholesterolâ€Grafted Lightâ€Đriven Molecular Motor. Small Methods, 2022, 6, e2200269.	4.6	32
36	An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals. Liquid Crystals, 2018, 45, 1854-1860.	0.9	31

#	Article	IF	CITATIONS
37	Modulation of Chirality and Intensity of Circularly Polarized Luminescence Emitting from Cholesteric Liquid Crystals Triggered by Photoresponsive Molecular Motor. Advanced Optical Materials, 2022, 10, .	3.6	31
38	Effects of polymer micro-structures on the thermo-optical properties of a flexible soft-mater film based on liquid crystals / polymer composite. Polymer, 2018, 146, 161-168.	1.8	30
39	A polymer microsphere-filled cholesteric-liquid crystal film with bistable electro-optical characteristics. Materials and Design, 2018, 157, 151-158.	3.3	28
40	Influence of alkoxy tail length and unbalanced mesogenic core on phase behavior of mesogenâ€ j acketed liquid crystalline polymers. Journal of Polymer Science Part A, 2009, 47, 505-514.	2.5	27
41	Synthesis and properties of mesogenâ€jacketed liquid crystalline polymers containing biphenyl mesogen with asymmetric substitutions. Journal of Polymer Science Part A, 2011, 49, 3207-3217.	2.5	27
42	Photoinduced polymer-stabilised chiral nematic liquid crystal films reflecting both right- and left-circularly polarised light. Liquid Crystals, 2015, 42, 1120-1123.	0.9	27
43	Synthesis and self-assembly behaviours of side-chain smectic thiol–ene polymers based on the polysiloxane backbone. Journal of Materials Chemistry C, 2016, 4, 1425-1440.	2.7	27
44	Polysiloxane-Based Side Chain Liquid Crystal Polymers: From Synthesis to Structure–Phase Transition Behavior Relationships. Polymers, 2018, 10, 794.	2.0	27
45	Tunable Circularly Polarized Luminescence with a High Dissymmetry Factor Emitted from Luminogen-Bonded and Electrically Controlled Polymer-Stabilized Cholesteric Liquid Crystals. ACS Applied Materials & Interfaces, 2022, 14, 8490-8498.	4.0	27
46	The fabrication of novel optical diffusers based on UV-cured polymer dispersed liquid crystals. Liquid Crystals, 2019, 46, 138-144.	0.9	26
47	An electrically light-transmittance-switchable film with a low driving voltage based on liquid crystal/polymer composites. Liquid Crystals, 2020, 47, 106-113.	0.9	26
48	Effects of the methacrylate monomers with different end groups on the morphologies, electro-optical and mechanical properties of polymer dispersed liquid crystals composite films. Liquid Crystals, 2021, 48, 722-734.	0.9	26
49	Fabrication of a controllable anti-peeping device with a laminated structure of microlouver and polymer dispersed liquid crystals film. Liquid Crystals, 2019, 46, 2235-2244.	0.9	25
50	Switchable anti-peeping film for liquid crystal displays from polymer dispersed liquid crystals. Liquid Crystals, 2019, 46, 718-724.	0.9	25
51	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie - International Edition, 2021, 60, 19406-19412.	7.2	24
52	Humidity-Responsive Photonic Crystals with pH and SO ₂ Gas Detection Ability Based on Cholesteric Liquid Crystalline Networks. ACS Applied Materials & Interfaces, 2022, 14, 16764-16771.	4.0	24
53	Preparation of polymer-dispersed liquid crystal doped with indium tin oxide nanoparticles. Liquid Crystals, 2018, 45, 1068-1077.	0.9	23
54	Programmable electro-optical performances in a dual-frequency liquid crystals / polymer composite system. Polymer, 2018, 149, 164-168.	1.8	23

#	Article	IF	CITATIONS
55	Effect of Polymer Network Topology on the Electroâ€Optical Performance of Polymer Stabilized Liquid Crystal (PSLC) Devices. Macromolecular Chemistry and Physics, 2020, 221, 2000185.	1.1	23
56	Effects of rigid structures containing (meth)acrylate monomers and crosslinking agents with different chain length on the morphology and electro-optical properties of polymer-dispersed liquid crystal films. Journal of Modern Optics, 2020, 67, 682-691.	0.6	23
57	Reverse-mode polymer dispersed liquid crystal films prepared by patterned polymer walls. Liquid Crystals, 2015, 42, 1320-1328.	0.9	22
58	Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals, 2020, 47, 481-488.	0.9	22
59	Photochemically and Photothermally Controllable Liquid Crystalline Network and Soft Walkers. ACS Applied Materials & Interfaces, 2021, 13, 3221-3227.	4.0	22
60	Effects of oxygen heterocyclic acrylate monomers on the morphologies and electro-optical properties of polymer dispersed liquid crystal composite films. Optik, 2021, 229, 166254.	1.4	21
61	A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films. Molecules, 2017, 22, 317.	1.7	20
62	Electro-Optical Properties of a Polymer Dispersed and Stabilized Cholesteric Liquid Crystals System Constructed by a Stepwise UV-Initiated Radical/Cationic Polymerization. Crystals, 2019, 9, 282.	1.0	20
63	Reversible light-directed self-organized 3D liquid crystalline photonic nanostructures doped with azobenzene-functionalized bent-shaped molecules. Journal of Materials Chemistry C, 2018, 6, 7740-7744.	2.7	19
64	Preparation and properties of highly birefringent liquid crystalline materials: styrene monomers with acetylenes, naphthyl, and isothiocyanate groups. Liquid Crystals, 2010, 37, 453-462.	0.9	18
65	Multicolored Electrochromic Device from the Reversible Aggregation and Decentralization of Silver Nanoparticles. Advanced Optical Materials, 2016, 4, 106-111.	3.6	18
66	Thermally stable transparent sol–gel based active siloxane–oligomer materials with tunable high refractive index and dual reactive groups. RSC Advances, 2016, 6, 70825-70831.	1.7	17
67	Fluorescence enhancement and encapsulation of quantum dots via a novel crosslinked vinyl-ether liquid crystals/polymer composite film. Polymer, 2020, 207, 122834.	1.8	17
68	Effects of multifunctional acrylates and thiols on the morphology and electro-optical properties of polymer-dispersed liquid crystal films. Liquid Crystals, 2021, 48, 1457-1466.	0.9	17
69	Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films. Molecules, 2017, 22, 43.	1.7	16
70	Study on the morphologies and electro-optical properties of cyano-phenyl-ester liquid crystals/polymer composite films prepared by a stepwise polymerisation. Liquid Crystals, 2020, 47, 1497-1506.	0.9	16
71	Electrically tunable properties of wideband-absorptive and reflection-selective films based on multi-dichroic dye-doped cholesteric liquid crystals. Liquid Crystals, 2015, 42, 1698-1705.	0.9	15
72	A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force. ACS Applied Materials & Interfaces, 2017, 9, 23246-23254.	4.0	15

#	Article	IF	CITATIONS
73	Optical and thermal properties of Fe ₃ O ₄ nanoparticle-doped cholesteric liquid crystals. Liquid Crystals, 2018, 45, 1111-1117.	0.9	15
74	The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems. Liquid Crystals, 2018, 45, 1118-1128.	0.9	15
75	A novel optical diffuser based on polymer micro-balls-filled nematic liquid crystal composite film. RSC Advances, 2018, 8, 40347-40357.	1.7	15
76	Nonelectric Sustaining Bistable Polymer Framework Liquid Crystal Films with a Novel Semirigid Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 22757-22766.	4.0	15
77	Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylthiophene-yl) styrene monomers. Liquid Crystals, 2009, 37, 69-76.	0.9	14
78	Cyano terminated tolane compounds for polymer dispersed liquid crystal application: relationship between cyano terminated tolane based molecular structures and electro-optical properties. Liquid Crystals, 2018, 45, 1771-1782.	0.9	14
79	Design, synthesis, and characterisation of symmetrical bent-core liquid crystalline dimers with diacetylene spacer. Liquid Crystals, 2013, 40, 1263-1273.	0.9	13
80	Fabrication of nanofibres with azopyridine compounds in various acids and solvents. RSC Advances, 2015, 5, 31219-31225.	1.7	13
81	Thiol-ene reaction based polymer dispersed liquid crystal composite films with low driving voltage and high contrast ratio. Liquid Crystals, 2020, 47, 2171-2183.	0.9	13
82	Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS Applied Materials & Interfaces, 2021, 13, 59221-59230.	4.0	13
83	Amphiphilic mesogenâ€jacketed liquid crystalline polymers: Design, synthesis, and selfâ€assembly behaviors. Journal of Polymer Science Part A, 2012, 50, 1792-1800.	2.5	12
84	Unconventional High-Performance Laser Protection System Based on Dichroic Dye-Doped Cholesteric Liquid Crystals. Scientific Reports, 2017, 7, 42955.	1.6	12
85	Regulating content of thiol/LC and UV intensity to optimize morphology and electro-optical performance of polymer-dispersed liquid crystal. Liquid Crystals, 2018, 45, 1726-1733.	0.9	12
86	Angular Photochromic LC Composite Film for an Anti-Counterfeiting Label. Polymers, 2018, 10, 453.	2.0	12
87	Comparative studies of polymerâ€dispersed liquid crystal films via a thiolâ€ene click reaction. Polymers for Advanced Technologies, 2019, 30, 2781-2789.	1.6	12
88	A UVâ€Responsive Multifunctional Photoelectric Device Based on Discotic Columnar Nanostructures and Molecular Motors. Advanced Materials, 2019, 31, e1806016.	11.1	12
89	Fluorescence enhancement of quantum dots from the titanium dioxide/liquid crystals/polymer composite films. Liquid Crystals, 2021, 48, 322-335.	0.9	12
90	Reprogrammable Humidity-Driven Liquid Crystalline Polymer Actuator Enabled by Dynamic Ionic Bonds. ACS Applied Materials & Interfaces, 2022, 14, 17869-17877.	4.0	12

#	Article	IF	CITATIONS
91	A series of novel side chain liquid crystalline polysiloxanes containing cyano―and cholesterolâ€ŧerminated substituents: Where will the structureâ€dependence of terminal behavior of the side chain reappear?. Journal of Polymer Science Part A, 2017, 55, 1765-1772.	2.5	11
92	A switchable optical diffuser based on a polymer/nematic liquid crystal composite film with transient polymer balls-networks microstructure. Liquid Crystals, 2019, 46, 2213-2222.	0.9	11
93	Combined effect of hydroxylated and fluorinated acrylate monomers on improving the electro-optical and mechanical performances of PDLC-films. Liquid Crystals, 2022, 49, 769-779.	0.9	11
94	A greener electrochromic liquid crystal based on ionic liquid electrolytes. Liquid Crystals, 2016, 43, 1110-1119.	0.9	10
95	Optical diffusers based on uniform nano-sized polymer balls/nematic liquid crystals composite films. Liquid Crystals, 2020, 47, 785-798.	0.9	10
96	Effect of functionality of thiol on the optical properties of liquid crystals/polymer composite films. Liquid Crystals, 2021, 48, 313-321.	0.9	10
97	Cu ₁₂ Sb ₄ S ₁₃ Quantum Dots/Fewâ€Layered Ti ₃ C ₂ Nanosheets with Enhanced K ⁺ Diffusion Dynamics for Efficient Potassium Ion Storage. Advanced Functional Materials, 2022, 32, 2108574.	7.8	10
98	Effects of chemically functionalized <scp>TiO₂</scp> nanoparticles on the <scp>UV</scp> â€shielding characteristics of polymerâ€dispersed liquid crystals. Polymers for Advanced Technologies, 2022, 33, 1561-1568.	1.6	10
99	Reprogrammable Assembly of Molecular Motor on Solid Surfaces via Dynamic Bonds. Small, 2017, 13, 1700480.	5.2	9
100	Synthesis and characterisation of liquid crystalline anthraquinone dyes with excellent dichroism and solubility. Liquid Crystals, 2016, 43, 1307-1314.	0.9	8
101	Broadband Reflection in Polymerâ€Stabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angewandte Chemie, 2019, 131, 6770-6774.	1.6	8
102	The Electro-Optical Properties and Adhesion Strength of Epoxy-Polymercaptan-Based Polymer Dispersed Liquid Crystal Films. Crystals, 2021, 11, 576.	1.0	8
103	Study on electro-optical and adhesion properties of polymer dispersed liquid crystal films from thiol-ene click reaction. Liquid Crystals, 2021, 48, 2188-2199.	0.9	8
104	Influence of shorter backbone and cholesteric monomer percentage on the phase structures and thermal-optical properties of linear siloxane tetramers containing cholesterol and benzene methyl ether groups. RSC Advances, 2016, 6, 87502-87512.	1.7	7
105	Liquid Crystalline Composite Stabilized by Epoxy Polymer with Boscageâ€Like Morphology for Energyâ€Efficient Smart Windows with High Stability. Macromolecular Materials and Engineering, 2022, 307, .	1.7	7
106	Special positive birefringence properties of mesogen-jacketed liquid crystalline polymer films for optical compensators. Polymer Chemistry, 2010, 1, 430-433.	1.9	6
107	Simulation on heat transfer of microchannels and thermal vias for high power electronic packages. , 2014, , .		6
108	TiO ₂ doped polymer dispersed and stabilised liquid crystal smart film with high contrast ratio, low driving voltage and short response time. Liquid Crystals, 2022, 49, 1623-1632.	0.9	6

#	Article	IF	CITATIONS
109	Influence of different spacer length and cholesteric monomer percentage on phase behaviors and thermo-optical properties of cyclic siloxane tetramers containing cholesteric and biphenyl groups. Journal of Materials Science, 2014, 49, 4927-4937.	1.7	5
110	Electro-switchable characteristics of broadband absorptive films based on multi-dichroic dye-doped nematic liquid crystal. Liquid Crystals, 2015, 42, 309-315.	0.9	5
111	<i>In situ</i> fast polymerization of graphene nanosheetsâ€filled poly(methyl methacrylate) nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
112	Periodic electro-optical characteristics of ion-doped Smectic A phase liquid crystals driven by a low-frequency electric field. Liquid Crystals, 2019, 46, 905-912.	0.9	5
113	Finger-Temperature-Detecting Liquid Crystal Composite Film for Anti-Counterfeiting Labels. Molecules, 2020, 25, 521.	1.7	4
114	Effects of terpene alcohol dopant on the morphology and electroâ€optical properties of polymerâ€dispersed liquidâ€crystal composite films. Polymers for Advanced Technologies, 2021, 32, 4153-4161.	1.6	4
115	Carbon nanotube reinforced self-healable polythiourethane with excellent bonding strength and improved thermal conductivity. Materials Chemistry Frontiers, 2022, 6, 1850-1857.	3.2	4
116	Self-Adaptive Accommodative Intraocular Lens Enabled by Sunlight-Driven Highly Transparent Liquid Crystalline Polymers. ACS Applied Polymer Materials, 2022, 4, 3552-3563.	2.0	3
117	Influence of different linkage groups in biphenyl mesogenic core on phase behaviors of mesogenâ€jacketed liquid crystalline polymers. Journal of Polymer Science Part A, 2013, 51, 2545-2554.	2.5	2
118	Synthesis, characterisation and comparative study of the hydroxyl, acrylate and vinyl-ether terminated cyanobiphenyl bridged with different spacer lengths. Liquid Crystals, 2021, 48, 168-181.	0.9	2
119	Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber. Crystals, 2020, 10, 128.	1.0	1
120	Microstructure and viscoelastic behaviors of graphene/PMMA nanocomposites. , 2015, , .		0
121	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie, 2021, 133, 19555-19561.	1.6	0
122	Simulation on heat transfer of microchannels and thermal vias for high power electronic packages. , 2014, , .		0