
Jorge Sineiro Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural antioxidants from residual sources. Food Chemistry, 2001, 72, 145-171.	8.2	1,325
2	Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science, 2014, 96, 526-534.	5.5	193
3	Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): Sources of Antioxidant Compounds and α-Glucosidase/α-Amylase Inhibitors. Journal of Agricultural and Food Chemistry, 2011, 59, 1630-1637.	5.2	134
4	A comparison between bark extracts from Pinus pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chemistry, 2007, 100, 439-444.	8.2	104
5	Separation and HPLC-MS Identification of Phenolic Antioxidants from Agricultural Residues: Almond Hulls and Grape Pomace. Journal of Agricultural and Food Chemistry, 2007, 55, 10101-10109.	5.2	98
6	Supercritical fluid and solid–liquid extraction of phenolic antioxidants from grape pomace: a comparative study. European Food Research and Technology, 2007, 226, 199-205.	3.3	94
7	Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chemistry, 2022, 372, 131231.	8.2	91
8	Murta Leaves (Ugni molinaeTurcz) as a Source of Antioxidant Polyphenols. Journal of Agricultural and Food Chemistry, 2006, 54, 59-64.	5.2	89
9	Procyanidins from pine bark: Relationships between structure, composition and antiradical activity. Food Chemistry, 2007, 104, 518-527.	8.2	85
10	Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis. Food Chemistry, 2006, 94, 406-414.	8.2	70
11	Life cycle assessment of the production of bioactive compounds fromÂTetraselmis suecica at pilot scale. Journal of Cleaner Production, 2014, 64, 323-331.	9.3	57
12	Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. European Food Research and Technology, 2009, 228, 467-475.	3.3	56
13	Recovery and Concentration of Antioxidants from Winery Wastes. Molecules, 2012, 17, 3008-3024.	3.8	47
14	Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 2018, 244, 1-10.	3.3	45
15	Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: effects of drying temperature of seaweed on the properties of extracts. Journal of Applied Phycology, 2017, 29, 3191-3200.	2.8	32
16	Identification of polymeric procyanidins from pine bark by mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 4013-4018.	1.5	28
17	Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica. Journal of Applied Phycology, 2012, 24, 1229-1236.	2.8	27
18	Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcaria bifurcata. Journal of Applied Phycology, 2016, 28, 609-618.	2.8	27

#	Article	IF	CITATIONS
19	Effects of calf diet, antioxidants, packaging type and storage time on beef steak storage. Meat Science, 2012, 90, 871-880.	5.5	24
20	Drying temperature effect on powder physical properties and aqueous extract characteristics of Fucus vesiculosus. Journal of Applied Phycology, 2016, 28, 2485-2494.	2.8	24
21	Antioxidant power, bacteriostatic activity, and characterization of white grape pomace extracts by HPLC–ESI–MS. European Food Research and Technology, 2009, 230, 291-301.	3.3	17
22	Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydrate Polymers, 2021, 272, 118455.	10.2	17
23	Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida. Journal of Applied Phycology, 2018, 30, 1259-1270.	2.8	16
24	Extraction and characterization of phlorotannin-enriched fractions from the Atlantic seaweed Bifurcaria bifurcata and evaluation of their cytotoxic activity in murine cell line. Journal of Applied Phycology, 2019, 31, 2573-2583.	2.8	16
25	Determination of thermal transitions of gluten-free chestnut flour doughs enriched with brown seaweed powders and antioxidant properties of baked cookies. Heliyon, 2019, 5, e01805.	3.2	13
26	Water Sorption Isotherms and Air Drying Kinetics of <i>Fucus vesiculosus</i> Brown Seaweed. Journal of Food Processing and Preservation, 2017, 41, e12997.	2.0	12
27	Simulation of multistage extraction of antioxidants from Chilean hazelnut (Gevuina avellana) hulls. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 389-396.	1.9	11
28	Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: effect of operation conditions. Journal of Applied Phycology, 2021, 33, 3297-3308.	2.8	10
29	Effect of brown seaweed addition and starch gelatinization on gluten-free chestnut flour doughs and cookies. Journal of Food Measurement and Characterization, 2019, 13, 2571-2580.	3.2	5
30	Polyphenols extraction kinetics from Ascophyllum nodosum seaweed employing water and saltwater: Effect of ultrasound sonication. Algal Research, 2022, 66, 102773.	4.6	4
31	Antioxidant activity of pine bark procyanidins in bulk corn oil and corn oilâ€inâ€water emulsions. European Journal of Lipid Science and Technology, 2011, 113, 1402-1411.	1.5	3
32	Analgesic and antiinflammatory effects of <i>Nigella orientalis</i> L. seeds fixed oil: Pharmacological potentials and molecular mechanisms. Phytotherapy Research, 2022, 36, 1372-1385.	5.8	3
33	Interactions between Ascophyllum nodosum Seaweeds Polyphenols and Native and Gelled Corn Starches. Foods, 2022, 11, 1165.	4.3	3
34	Antioxidant potential and antiangiogenic activity of <i>Tetraselmis suecica</i> grown in a semicontinuous culture. Journal of Chemical Technology and Biotechnology, 2022, 97, 2528-2536.	3.2	3
35	In vitro inhibition of starch digestive enzymes by ultrasoundâ€assisted extracted polyphenols from <i>Ascophyllum nodosum</i> seaweeds. Journal of Food Science, 2022, 87, 2405-2416.	3.1	3
36	Fractionation and characterization of proteins from <i>Gevuina avellana</i> and <i>Rosa rubiginosa</i> seeds. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 169-173.	1.9	1