
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8135589/publications.pdf Version: 2024-02-01

SHENC-CALLIN

#	Article	IF	CITATIONS
1	Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Research, 2022, 32, 54-71.	5.7	14
2	Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature, 2022, 603, 159-165.	13.7	205
3	Identification of serum metabolites enhancing inflammatory responses in COVID-19. Science China Life Sciences, 2022, 65, 1971-1984.	2.3	6
4	Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex. Cell Death and Disease, 2022, 13, 414.	2.7	8
5	Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Research, 2021, 31, 478-481.	5.7	29
6	SRC promotes lipogenesis: implications for obesity and breast cancer. Molecular and Cellular Oncology, 2021, 8, 1866975.	0.3	0
7	AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nature Cell Biology, 2021, 23, 268-277.	4.6	17
8	Aldolase deployed for surveilling glucose. Nature Reviews Molecular Cell Biology, 2020, 21, 714-714.	16.1	2
9	Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nature Communications, 2020, 11, 5842.	5.8	33
10	Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chemical Biology, 2020, 27, 1359-1370.e8.	2.5	13
11	AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metabolism, 2020, 31, 472-492.	7.2	428
12	Glucose Starvation Blocks Translation at Multiple Levels. Cell Metabolism, 2020, 31, 217-218.	7.2	15
13	Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metabolism, 2019, 30, 508-524.e12.	7.2	86
14	Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Research, 2019, 29, 460-473.	5.7	101
15	Determining AMPK Activation via the Lysosomal v-ATPase-Ragulator-AXIN/LKB1 Axis. Methods in Molecular Biology, 2018, 1732, 393-411.	0.4	10
16	AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity. Cell Metabolism, 2018, 27, 843-853.e6.	7.2	38
17	Liverâ€specific deficiency of uncâ€51 like kinase 1 and 2 protects mice from acetaminophenâ€induced liver injury. Hepatology, 2018, 67, 2397-2413.	3.6	33
18	AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metabolism, 2018, 27, 299-313.	7.2	757

#	Article	IF	CITATIONS
19	Carbohydrates: Not All that Bad?. Cell Metabolism, 2018, 28, 671-672.	7.2	1
20	Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nature Communications, 2018, 9, 1916.	5.8	44
21	Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion. Cell Research, 2018, 28, 865-867.	5.7	21
22	Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature, 2017, 548, 112-116.	13.7	469
23	Methods to Study Lysosomal AMPK Activation. Methods in Enzymology, 2017, 587, 465-480.	0.4	3
24	AMP-activated protein kinase – not just an energy sensor. F1000Research, 2017, 6, 1724.	0.8	72
25	A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nature Communications, 2016, 7, 10879.	5.8	37
26	ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy. Molecular Cell, 2016, 62, 359-370.	4.5	97
27	Metformin Activates AMPK through the Lysosomal Pathway. Cell Metabolism, 2016, 24, 521-522.	7.2	196
28	Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Research, 2016, 26, 1112-1130.	5.7	112
29	AMPK Promotes Autophagy by Facilitating Mitochondrial Fission. Cell Metabolism, 2016, 23, 399-401.	7.2	99
30	Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nature Immunology, 2015, 16, 1142-1152.	7.0	218
31	RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect. Cell Research, 2015, 25, 1025-1042.	5.7	45
32	Structure and mechanism of the unique C2 domain of Aida. FEBS Journal, 2014, 281, 4622-4632.	2.2	4
33	The Lysosomal v-ATPase-Ragulator Complex Is a Common Activator for AMPK and mTORC1, Acting as a Switch between Catabolism and Anabolism. Cell Metabolism, 2014, 20, 526-540.	7.2	406
34	AMP as a Low-Energy Charge Signal Autonomously Initiates Assembly of AXIN-AMPK-LKB1 Complex for AMPK Activation. Cell Metabolism, 2013, 18, 546-555.	7.2	215
35	Mechanism and Physiological Significance of Growth Factor-Related Autophagy. Physiology, 2013, 28, 423-431.	1.6	10
36	Protein phosphorylation-acetylation cascade connects growth factor deprivation to autophagy. Autophagy, 2012, 8, 1385-1386.	4.3	24

#	Article	IF	CITATIONS
37	The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Research, 2012, 22, 1246-1257.	5.7	65
38	The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut, 2012, 61, 714-724.	6.1	62
39	Revealing a steroid receptor ligand as a unique PPARÎ ³ agonist. Cell Research, 2012, 22, 746-756.	5.7	19
40	The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nature Chemical Biology, 2012, 8, 897-904.	3.9	149
41	GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy. Science, 2012, 336, 477-481.	6.0	320
42	PLK1 Interacts and Phosphorylates Axin That Is Essential for Proper Centrosome Formation. PLoS ONE, 2012, 7, e49184.	1.1	21
43	Molecular Basis of Wnt Activation via the DIX Domain Protein Ccd1. Journal of Biological Chemistry, 2011, 286, 8597-8608.	1.6	39
44	Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nature Cell Biology, 2011, 13, 263-272.	4.6	128
45	Cdk5-Mediated Phosphorylation of Axin Directs Axon Formation during Cerebral Cortex Development. Journal of Neuroscience, 2011, 31, 13613-13624.	1.7	67
46	ChIP-seq and Functional Analysis of the SOX2 Gene in Colorectal Cancers. OMICS A Journal of Integrative Biology, 2010, 14, 369-384.	1.0	61
47	Identification of Novel SNPs by Next-Generation Sequencing of the Genomic Region Containing the <i>APC</i> Gene in Colorectal Cancer Patients in China. OMICS A Journal of Integrative Biology, 2010, 14, 315-325.	1.0	7
48	Rock2 controls TGFβ signaling and inhibits mesoderm induction in zebrafish embryos. Journal of Cell Science, 2009, 122, 2197-2207.	1.2	30
49	Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nature Cell Biology, 2009, 11, 1128-1134.	4.6	82
50	The Core Protein of Glypican Dally-Like Determines Its Biphasic Activity in Wingless Morphogen Signaling. Developmental Cell, 2009, 17, 470-481.	3.1	96
51	RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis. Science, 2009, 325, 332-336.	6.0	1,637
52	Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nature Chemical Biology, 2008, 4, 548-556.	3.9	302
53	CDK5 activator p35 downregulates Eâ€cadherin precursor independently of CDK5. FEBS Letters, 2008, 582, 1197-1202.	1.3	11
54	Protein Encoded by the Axin Allele Effectively Down-regulates Wnt Signaling but Exerts a Dominant Negative Effect on c-Jun N-terminal Kinase Signaling. Journal of Biological Chemistry, 2008, 283, 13132-13139.	1.6	10

#	Article	IF	CITATIONS
55	Determinants That Control the Distinct Subcellular Localization of p38î±-PRAK and p38î²-PRAK Complexes. Journal of Biological Chemistry, 2008, 283, 11014-11023.	1.6	32
56	A Suppressive Role of the Prolyl Isomerase Pin1 in Cellular Apoptosis Mediated by the Death-associated Protein Daxx. Journal of Biological Chemistry, 2007, 282, 36671-36681.	1.6	58
57	Daxx Cooperates with the Axin/HIPK2/p53 Complex to Induce Cell Death. Cancer Research, 2007, 67, 66-74.	0.4	98
58	A β-Catenin-Independent Dorsalization Pathway Activated by Axin/JNK Signaling and Antagonized by Aida. Developmental Cell, 2007, 13, 268-282.	3.1	50
59	Differential requirement of MKK4 and MKK7 in JNK activation by distinct scaffold proteins. FEBS Letters, 2007, 581, 196-202.	1.3	21
60	Axin bridges Daxx to p53. Cell Research, 2007, 17, 301-302.	5.7	11
61	Tob1 Controls Dorsal Development of Zebrafish Embryos by Antagonizing Maternal β-Catenin Transcriptional Activity. Developmental Cell, 2006, 11, 225-238.	3.1	67
62	Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia. EMBO Journal, 2006, 25, 1646-1658.	3.5	161
63	p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO Journal, 2006, 25, 5703-5715.	3.5	62
64	Distinct Roles of Basal Steady-State and Induced H-Ferritin in Tumor Necrosis Factor-Induced Death in L929 Cells. Molecular and Cellular Biology, 2005, 25, 6673-6681.	1.1	45
65	Axin Contains Three Separable Domains That Confer Intramolecular, Homodimeric, and Heterodimeric Interactions Involved in Distinct Functions. Journal of Biological Chemistry, 2005, 280, 5054-5060.	1.6	46
66	Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability. Cell, 2005, 120, 623-634.	13.5	787
67	β-actin is required for mitochondria clustering and ROS generation in TNF-induced, caspase-independent cell death. Journal of Cell Science, 2004, 117, 4673-4680.	1.2	58
68	Axin: A Master Scaffold for Multiple Signaling Pathways. NeuroSignals, 2004, 13, 99-113.	0.5	136
69	The DIX Domain Protein Coiled-coil-DIX1 Inhibits c-Jun N-terminal Kinase Activation by Axin and Dishevelled through Distinct Mechanisms. Journal of Biological Chemistry, 2004, 279, 39366-39373.	1.6	39
70	RXRα acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells. Journal of Cell Science, 2004, 117, 5609-5621.	1.2	59
71	Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO Journal, 2004, 23, 4583-4594.	3.5	150
72	CIDE-A, a novel link between brown adipose tissue and obesity. Trends in Molecular Medicine, 2004, 10, 434-439.	3.5	53

#	Article	IF	CITATIONS
73	Detection of point mutations of the Axin1 gene in colorectal cancers. International Journal of Cancer, 2003, 107, 696-699.	2.3	61
74	Cidea-deficient mice have lean phenotype and are resistant to obesity. Nature Genetics, 2003, 35, 49-56.	9.4	412
75	Ephrin-B1 Reverse Signaling Activates JNK through a Novel Mechanism That Is Independent of Tyrosine Phosphorylation. Journal of Biological Chemistry, 2003, 278, 24767-24775.	1.6	45
76	Axin Utilizes Distinct Regions for Competitive MEKK1 and MEKK4 Binding and JNK Activation. Journal of Biological Chemistry, 2003, 278, 37451-37458.	1.6	61
77	Casein Kinase I and Casein Kinase II Differentially Regulate Axin Function in Wnt and JNK Pathways. Journal of Biological Chemistry, 2002, 277, 17706-17712.	1.6	44
78	SUMO-1 Modification of the C-terminal KVEKVD of Axin Is Required for JNK Activation but Has No Effect on Wnt Signaling. Journal of Biological Chemistry, 2002, 277, 42981-42986.	1.6	77
79	Axin negatively affects tau phosphorylation by glycogen synthase kinase 3β. Journal of Neurochemistry, 2002, 83, 904-913.	2.1	22
80	Multiple phosphorylation sites in RGS16 differentially modulate its GAP activity. FEBS Letters, 2001, 504, 16-22.	1.3	31
81	Differential Molecular Assemblies Underlie the Dual Function of Axin in Modulating the Wnt and JNK Pathways. Journal of Biological Chemistry, 2001, 276, 32152-32159.	1.6	38
82	Dimerization Choices Control the Ability of Axin and Dishevelled to Activate c-Jun N-terminal Kinase/Stress-activated Protein Kinase. Journal of Biological Chemistry, 2000, 275, 25008-25014.	1.6	41
83	Axin-Induced Apoptosis Depends on the Extent of Its JNK Activation and Its Ability to Down-Regulate β-Catenin Levels. Biochemical and Biophysical Research Communications, 2000, 272, 144-150.	1.0	49
84	RGS16 Attenuates Gαq-dependent p38 Mitogen-activated Protein Kinase Activation by Platelet-activating Factor. Journal of Biological Chemistry, 1999, 274, 2851-2857.	1.6	51
85	Axin Forms a Complex with MEKK1 and Activates c-Jun NH2-terminal Kinase/Stress-activated Protein Kinase through Domains Distinct from Wnt Signaling. Journal of Biological Chemistry, 1999, 274, 35247-35254.	1.6	111
86	The Membrane Association Domain of RGS16 Contains Unique Amphipathic Features That Are Conserved in RGS4 and RGS5. Journal of Biological Chemistry, 1999, 274, 19799-19806.	1.6	91
87	The core domain of RGS16 retains G-protein binding and GAP activity in vitro, but is not functional in vivo. FEBS Letters, 1998, 422, 359-362.	1.3	35
88	Characterization of a Novel Mammalian RGS Protein That Binds to Gα Proteins and Inhibits Pheromone Signaling in Yeast. Journal of Biological Chemistry, 1997, 272, 8679-8685.	1.6	147
89	A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors. Cell, 1996, 85, 403-414.	13.5	2,078
90	The Ames Dwarf Gene Is Required for Pit-1 Gene Activation. Developmental Biology, 1995, 172, 495-503.	0.9	160

#	Article	IF	CITATIONS
91	Molecular basis of the little mouse phenotype and Implications for cell type-specific growth. Nature, 1993, 364, 208-213.	13.7	477
92	Alterations in Actin-Binding β-Thymosin Expression Accompany Neuronal Differentiation and Migration in Rat Cerebellum. Journal of Neurochemistry, 1993, 61, 2104-2114.	2.1	40
93	Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature, 1992, 360, 765-768.	13.7	311
94	Developmental expression of mRNAs encoding thymosins β4 and β10 in rat brain and other tissues. Journal of Molecular Neuroscience, 1990, 2, 35-44.	1.1	78