
Susanne Alban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8135368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-1,3 Glucan Sulfate, but Not β-1,3 Glucan, Induces the Salicylic Acid Signaling Pathway in Tobacco and Arabidopsis. Plant Cell, 2004, 16, 3020-3032.	3.1	172
2	Characterization of the Structural Requirements for a Carbohydrate Based Anticoagulant with a Reduced Risk of Inducing the Immunological Type of Heparin-associated Thrombocytopenia. Thrombosis and Haemostasis, 1995, 74, 886-892.	1.8	139
3	Dendritic Polyglycerol Sulfates as New Heparin Analogues and Potent Inhibitors of the Complement System. Bioconjugate Chemistry, 2004, 15, 162-167.	1.8	127
4	The 37â€kDa/67â€kDa Laminin Receptor Acts as a Receptor for Infectious Prions and Is Inhibited by Polysulfated Glycanes. Journal of Infectious Diseases, 2006, 194, 702-709.	1.9	115
5	Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests. Clinical Chemistry and Laboratory Medicine, 2014, 52, 835-44.	1.4	101
6	The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thrombosis and Haemostasis, 2006, 95, 535-540.	1.8	98
7	Adverse Effects of Heparin. Handbook of Experimental Pharmacology, 2012, , 211-263.	0.9	69
8	Gradual degradation of fucoidan from Fucus vesiculosus and its effect on structure, antioxidant and antiproliferative activities. Carbohydrate Polymers, 2018, 192, 208-216.	5.1	66
9	Pharmacological Strategies for Inhibition of Thrombin Activity. Current Pharmaceutical Design, 2008, 14, 1152-1175.	0.9	63
10	From heparins to factor Xa inhibitors and beyond. European Journal of Clinical Investigation, 2005, 35, 12-20.	1.7	62
11	Partial Synthetic Glucan Sulfates as Potential New Antithrombotics:Â A Review. Biomacromolecules, 2001, 2, 354-361.	2.6	58
12	Characterization of the Anticoagulant Actions of a Semisynthetic Curdlan Sulfate. Thrombosis Research, 2000, 99, 377-388.	0.8	55
13	Molecular weight determines the frequency of delayed type hypersensitivity reactions to heparin and synthetic oligosaccharides. Thrombosis and Haemostasis, 2005, 94, 1265-1269.	1.8	53
14	Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity. Marine Drugs, 2015, 13, 76-101.	2.2	53
15	Differentiation Between the Complement Modulating Effects of an Arabinogalactan-Protein fromEchinacea purpureaand Heparin. Planta Medica, 2002, 68, 1118-1124.	0.7	51
16	The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity. Biochemical Pharmacology, 2006, 72, 474-485.	2.0	51
17	Composition of OSCS-contaminated heparin occurring in 2008 in batches on the German market. European Journal of Pharmaceutical Sciences, 2010, 40, 297-304.	1.9	47
18	Size-dependent pharmacological activities of differently degraded fucoidan fractions from Fucus vesiculosus. Carbohydrate Polymers, 2018, 189, 162-168.	5.1	47

SUSANNE ALBAN

#	Article	IF	CITATIONS
19	Anticoagulant and antithrombotic actions of a semisynthetic \hat{l}^2 -1,3-glucan sulfate. Thrombosis Research, 1995, 78, 201-210.	0.8	43
20	Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: superiority of a sulfated galactofucan from the brown alga <i>Saccharina latissima</i> and Fucoidan over heparins. Glycobiology, 2015, 25, 812-824.	1.3	43
21	Plasma Levels of Total and Free Tissue Factor Pathway Inhibitor (TFPI) as Individual Pharmacological Parameters of Various Heparins. Thrombosis and Haemostasis, 2001, 85, 824-829.	1.8	42
22	Pharmacological profiles of animal- and nonanimal-derived sulfated polysaccharides - comparison of unfractionated heparin, the semisynthetic glucan sulfate PS3, and the sulfated polysaccharide fraction isolated from Delesseria sanguinea. Glycobiology, 2008, 19, 408-417.	1.3	42
23	Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Research, 2020, 45, 101759.	2.4	42
24	Gas-Liquid Chromatography-Mass Spectrometry Analysis of Anticoagulant Active Curdlan Sulfates. Seminars in Thrombosis and Hemostasis, 1994, 20, 152-158.	1.5	37
25	Comparison of established and novel purity tests for the quality control of heparin by means of a set of 177 heparin samples. Analytical and Bioanalytical Chemistry, 2011, 399, 605-620.	1.9	37
26	Effects of Fucoidans from Five Different Brown Algae on Oxidative Stress and VEGF Interference in Ocular Cells. Marine Drugs, 2019, 17, 258.	2.2	35
27	PS3, A Semisynthetic β-1,3-Glucan Sulfate, Diminishes Contact Hypersensitivity Responses Through Inhibition of L- and P-Selectin Functions. Journal of Investigative Dermatology, 2009, 129, 1192-1202.	0.3	29
28	Structural Requirements of Heparin and Related Molecules to Exert a Multitude of Anti-Inflammatory Activities. Mini-Reviews in Medicinal Chemistry, 2006, 6, 1009-1023.	1.1	28
29	Kinetic Analysis of Heparin and Clucan Sulfates Binding to P-Selectin and Its Impact on the General Understanding of Selectin Inhibition. Biochemistry, 2007, 46, 6156-6164.	1.2	28
30	Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Marine Drugs, 2019, 17, 441.	2.2	28
31	Molecular Weight-Dependent Influence of Heparin on the Form of Tissue Factor Pathway Inhibitor Circulating in Plasma. Seminars in Thrombosis and Hemostasis, 2001, 27, 503-512.	1.5	27
32	Evaluation of Seasonal Variations of the Structure and Anti-inflammatory Activity of Sulfated Polysaccharides Extracted from the Red Alga Delesseria sanguinea (Hudson) Lamouroux (Ceramiales,) Tj ETQq() 0 02:.gBT /	Overtock 107
33	Optimized and Standardized Isolation and Structural Characterization of Anti-inflammatory Sulfated Polysaccharides from the Red Alga Delesseria sanguinea (Hudson) Lamouroux (Ceramiales,) Tj ETQq1 1 0.7843	14 r g ЉТ /О	verbock 10 Tr
34	Regulation of Complement and Contact System Activation via C1 Inhibitor Potentiation and Factor XIIa Activity Modulation by Sulfated Glycans – Structure-Activity Relationships. PLoS ONE, 2016, 11, e0165493.	1.1	26
35	The 'precautionary principle' as a guide for future drug development. European Journal of Clinical Investigation, 2005, 35, 33-44.	1.7	25
36	Affinity and Kinetics of Different Heparins Binding to P- and L-Selectin. Seminars in Thrombosis and Hemostasis, 2007, 33, 534-539.	1.5	25

SUSANNE ALBAN

#	Article	IF	CITATIONS
37	Size distribution and chain conformation of six different fucoidans using size-exclusion chromatography with multiple detection. Journal of Chromatography A, 2020, 1612, 460658.	1.8	25
38	Development and evaluation of a fluorescence microplate assay for quantification of heparins and other sulfated carbohydrates. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 1-8.	1.4	20
39	Simple fluorescence assay for quantification of OSCS in heparin. Analytical and Bioanalytical Chemistry, 2011, 399, 673-680.	1.9	20
40	Effects of Crude Fucus distichus Subspecies evanescens Fucoidan Extract on Retinal Pigment Epithelium Cells―Implications for Use in Age-Related Macular Degeneration. Marine Drugs, 2019, 17, 538.	2.2	18
41	Elastase Inhibition Assay with Peptide Substrates – An Example for the Limited Comparability of <i>in vitro</i> Results. Planta Medica, 2008, 74, 852-858.	0.7	17
42	Prothrombin Time for Detection of Contaminated Heparins. New England Journal of Medicine, 2008, 359, 2732-2734.	13.9	16
43	Evaluation of the Effects of Fucoidans from Fucus Species and Laminaria hyperborea against Oxidative Stress and Iron-Dependent Cell Death. Marine Drugs, 2021, 19, 557.	2.2	16
44	Combination of a two-step fluorescence assay and a two-step anti-Factor Xa assay for detection of heparin falsifications and protein in heparins. Analytical and Bioanalytical Chemistry, 2011, 399, 681-690.	1.9	15
45	Influence of Fucoidan Extracts from Different Fucus Species on Adult Stem Cells and Molecular Mediators in In Vitro Models for Bone Formation and Vascularization. Marine Drugs, 2021, 19, 194.	2.2	15
46	Pharmacokinetic and Pharmacodynamic Characterization of a Medium-Molecular-Weight Heparin in Comparison with UFH and LMWH. Seminars in Thrombosis and Hemostasis, 2002, 28, 369-378.	1.5	14
47	Perioperative bridging with fondaparinux in a woman with antithrombin deficiency. Thrombosis and Haemostasis, 2007, 97, 498-499.	1.8	13
48	Degradation of Eight Sulfated Polysaccharides Extracted from Red and Brown Algae and Its Impact on Structure and Pharmacological Activities. ACS Biomaterials Science and Engineering, 2019, 5, 1200-1214.	2.6	13
49	Simple and Rapid Quality Control of Sulfated Glycans by a Fluorescence Sensor Assay—Exemplarily Developed for the Sulfated Polysaccharides from Red Algae Delesseria sanguinea. Marine Drugs, 2014, 12, 2205-2227.	2.2	12
50	Size and molecular weight determination of polysaccharides by means of nano electrospray gasâ€phase electrophoretic mobility molecular analysis (nES GEMMA). Electrophoresis, 2018, 39, 1142-1150.	1.3	12
51	Effects of fucoidans and heparin on reactions of neutrophils induced by IL-8 and C5a. Carbohydrate Polymers, 2017, 165, 462-469.	5.1	10
52	Novel pharmaceutical applications of polysaccharides. Macromolecular Symposia, 1995, 99, 187-200.	0.4	8
53	Development of SPC-ELISA: A New Assay Principle for the Study of Sulfated Polysaccharide-Protein Interactions. Journal of Biomolecular Screening, 2001, 6, 393-400.	2.6	8
54	Development of both colorimetric and fluorescence heparinase activity assays using fondaparinux as substrate. Analytical Biochemistry, 2012, 427, 82-90.	1.1	8

SUSANNE ALBAN

#	Article	IF	CITATIONS
55	Testing of potential glycan-based heparanase inhibitors in a fluorescence activity assay using either bacterial heparinase II or human heparanase. Journal of Pharmaceutical and Biomedical Analysis, 2014, 95, 130-138.	1.4	8
56	Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Marine Drugs, 2021, 19, 51.	2.2	8
57	Direct oral anticoagulants and heparins: laboratory values and pitfalls in â€`bridging therapy'. European Journal of Cardio-thoracic Surgery, 2017, 51, ezw368.	0.6	7
58	Inhibition of PMN-elastase activity by semisynthetic glucan sulfates. Thrombosis and Haemostasis, 2003, 89, 915-25.	1.8	6
59	Degraded fucoidan fractions and β-1,3-glucan sulfates inhibit CXCL12-induced Erk1/2 activation and chemotaxis in Burkitt lymphoma cells. International Journal of Biological Macromolecules, 2020, 143, 968-976.	3.6	5
60	The COVIDâ€19 vaccine ChAdOx1â€5 is not contaminated with sulfated glycosaminoglycans. Journal of Thrombosis and Haemostasis, 2022, 20, 777-780.	1.9	5
61	Complement Modulating and Anticoagulant Effects of a Sulfated Exopolysaccharide Released by the Cyanobacterium Synechocystis aquatilis. Planta Medica, 2006, 72, 1424-1427.	0.7	4
62	Evaluation of a Brown Seaweed Extract from Dictyosiphon foeniculaceus as a Potential Therapeutic Agent for the Treatment of Glioblastoma and Uveal Melanoma. Marine Drugs, 2020, 18, 625.	2.2	4
63	Role of Sulfated Polysaccharides in the Pathogenesis?of Heparin-Induced Thrombocytopenia. Fundamental and Clinical Cardiology, 2007, , 167-186.	0.0	4
64	Development of SPC-ELISA: A New Assay Principle for the Study of Sulfated Polysaccharide–Protein Interactions. Journal of Biomolecular Screening, 2001, 6, 393-400.	2.6	1
65	Biological Activities and Effects on the Platelet Aggregation of a Structurally Defined Curdlan Sulfate. , 1996, , 235-242.		1
66	Editorial: Pharmazie in unserer Zeit 3/2004. Pharmazie in Unserer Zeit, 2004, 33, 157-157.	0.0	0
67	Editorial: Pharmazie in unserer Zeit 1/2006. Pharmazie in Unserer Zeit, 2006, 35, 3-3.	0.0	0
68	Editorial: Pharmazie in unserer Zeit 4/2009. Pharmazie in Unserer Zeit, 2009, 38, 295-295.	0.0	0