
Tobias E Granberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813433/publications.pdf Version: 2024-02-01

TORIAS F CRANREDC

#	Article	IF	CITATIONS
1	Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis. Journal of Neuroimaging, 2022, 32, 459-470.	1.0	5
2	Four Swedish cases of CSF1Râ€related leukoencephalopathy: Visualization of clinical phenotypes. Acta Neurologica Scandinavica, 2022, 145, 599-609.	1.0	3
3	Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. Journal of Neuroimaging, 2022, 32, 471-479.	1.0	3
4	The Karolinska NeuroCOVID study protocol: Neurocognitive impairment, biomarkers and advanced imaging in critical care survivors. Acta Anaesthesiologica Scandinavica, 2022, , .	0.7	9
5	Neuroimaging phenotypes of <i>CSF1R</i> â€related leukoencephalopathy: Systematic review, metaâ€analysis, and imaging recommendations. Journal of Internal Medicine, 2022, 291, 269-282.	2.7	14
6	Deep Learning Corpus Callosum Segmentation as a Neurodegenerative Marker in Multiple Sclerosis. Journal of Neuroimaging, 2021, 31, 493-500.	1.0	13
7	Expanding the etiologic spectrum of spastic ataxia syndrome: chronic infection with human T lymphotropic virus type 1. Journal of NeuroVirology, 2021, 27, 345-347.	1.0	0
8	COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin-aldosterone system. Nature Communications, 2021, 12, 2417.	5.8	75
9	Quantitative 7-Tesla Imaging of Cortical Myelin Changes in Early Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 714820.	1.1	4
10	Neuroâ€COVID: Does severe COVIDâ€19 infection increase the risk for cognitive impairment?. Alzheimer's and Dementia, 2021, 17, .	0.4	0
11	Rituximab treatment for multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 137-152.	1.4	46
12	MRIâ€Based Manual versus Automated Corpus Callosum Volumetric Measurements in Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 198-204.	1.0	6
13	Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. NeuroImage: Clinical, 2020, 28, 102371.	1.4	6
14	Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology, 2020, 297, E324-E334.	3.6	94
15	Cerebrospinal Fluid Metals and the Association with Cerebral Small Vessel Disease. Journal of Alzheimer's Disease, 2020, 78, 1229-1236.	1.2	9
16	7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain, 2020, 143, 2973-2987.	3.7	22
17	Automated brainstem volumetry can aid in the diagnostics of parkinsonian disorders. Parkinsonism and Related Disorders, 2020, 79, 18-25.	1.1	12
18	Neurological manifestations of coronavirus infections – a systematic review. Annals of Clinical and Translational Neurology, 2020, 7, 2057-2071.	1.7	59

TOBIAS E GRANBERG

#	Article	IF	CITATIONS
19	<i>SLC1A3</i> variant associated with hemiplegic migraine and acetazolamide-responsive MRS changes. Neurology: Genetics, 2020, 6, e474.	0.9	9
20	The reliability of a deep learning model in external memory clinic MRI data: A multiâ€cohort study. Alzheimer's and Dementia, 2020, 16, e042969.	0.4	0
21	Rare variants in dynein heavy chain genes in two individuals with situs inversus and developmental dyslexia: a case report. BMC Medical Genetics, 2020, 21, 87.	2.1	5
22	The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study. Medical Image Analysis, 2020, 66, 101714.	7.0	90
23	Phenotypic variability in chorea-acanthocytosis associated with novel VPS13A mutations. Neurology: Genetics, 2020, 6, e426.	0.9	5
24	Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 674-682.	1.0	12
25	Enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis. Journal of Neurology, 2020, 267, 3199-3212.	1.8	31
26	Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain, 2020, 143, 2089-2105.	3.7	34
27	Validation of Rapid Magnetic Resonance Myelin Imaging in Multiple Sclerosis. Annals of Neurology, 2020, 87, 710-724.	2.8	42
28	Brain Atrophy Subtypes and the ATN Classification Scheme in Alzheimer's Disease. Neurodegenerative Diseases, 2020, 20, 153-164.	0.8	6
29	Heterozygous variants in <i>DCC</i> . Neurology: Genetics, 2020, 6, e526.	0.9	4
30	Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurologica Scandinavica, 2019, 140, 320-327.	1.0	19
31	Gadolinium Retention in the Brain: An MRI Relaxometry Study of Linear and Macrocyclic Gadolinium-Based Contrast Agents in Multiple Sclerosis. American Journal of Neuroradiology, 2019, 40, 1265-1273.	1.2	24
32	Evidence for Progressive Microstructural Damage in Early Multiple Sclerosis by Multi-Shell Diffusion Magnetic Resonance Imaging. Neuroscience, 2019, 403, 27-34.	1.1	10
33	Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage: Clinical, 2019, 22, 101699.	1.4	27
34	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain, 2019, 142, 633-646.	3.7	75
35	Mapping of apparent susceptibility yields promising diagnostic separation of progressive supranuclear palsy from other causes of parkinsonism. Scientific Reports, 2019, 9, 6079.	1.6	18
36	Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology, 2019, 291, 740-749.	3.6	56

TOBIAS E GRANBERG

#	Article	IF	CITATIONS
37	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 2019, 184, 901-915.	2.1	163
38	Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. European Radiology, 2019, 29, 1355-1364.	2.3	93
39	Lesion accumulation is predictive of long-term cognitive decline in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 21, 110-116.	0.9	20
40	Changes in structural network are associated with cortical demyelination in early multiple sclerosis. Human Brain Mapping, 2018, 39, 2133-2146.	1.9	16
41	Detection of Leukocortical Lesions in Multiple Sclerosis and Their Association with Physical and Cognitive Impairment: A Comparison of Conventional and Synthetic Phase-Sensitive Inversion Recovery MRI. American Journal of Neuroradiology, 2018, 39, 1995-2000.	1.2	17
42	The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers. Neurobiology of Aging, 2018, 70, 18-29.	1.5	48
43	Cerebral microbleeds topography and cerebrospinal fluid biomarkers in cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1006-1013.	2.4	24
44	Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study. American Journal of Neuroradiology, 2017, 38, 1311-1316.	1.2	48
45	Topography and Determinants of Magnetic Resonance Imaging (MRI)â€Visible Perivascular Spaces in a Large Memory Clinic Cohort. Journal of the American Heart Association, 2017, 6, .	1.6	43
46	In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain, 2017, 140, 2912-2926.	3.7	159
47	Quantitative susceptibility mapping differentiates between parkinsonian disorders. Parkinsonism and Related Disorders, 2017, 44, 51-57.	1.1	77
48	Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurologica Scandinavica, 2017, 135, 17-24.	1.0	57
49	Visualization of cortical MS lesions with MRI need not be further improved – NO. Multiple Sclerosis Journal, 2017, 23, 17-19.	1.4	11
50	Early axonal damage in normal appearing white matter in multiple sclerosis: Novel insights from multi-shell diffusion MRI. , 2017, 2017, 3024-3027.		12
51	Hereditary diffuse leukoencephalopathy with spheroids – a volumetric and radiological comparison with multiple sclerosis patients and healthy controls. European Journal of Neurology, 2016, 23, 817-822.	1.7	17
52	Clinical Feasibility of Synthetic MRI in Multiple Sclerosis: A Diagnostic and Volumetric Validation Study. American Journal of Neuroradiology, 2016, 37, 1023-1029.	1.2	104
53	Reply:. American Journal of Neuroradiology, 2016, 37, E70-E70.	1.2	Ο
54	Neuroinflammatory component of gray matter pathology in multiple sclerosis. Annals of Neurology, 2016, 80, 776-790.	2.8	150

TOBIAS E GRANBERG

#	Article	IF	CITATIONS
55	Cortical superficial siderosis. Neurology, 2016, 87, 1110-1117.	1.5	37
56	Quantitative validation of a visual rating scale for frontal atrophy: associations with clinical status, APOE e4, CSF biomarkers and cognition. European Radiology, 2016, 26, 2597-2610.	2.3	39
57	Incidence of Radiologically Isolated Syndrome: A Population-Based Study. American Journal of Neuroradiology, 2016, 37, 1017-1022.	1.2	40
58	Cerebrospinal fluid profiles with increasing number of cerebral microbleeds in a continuum of cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 621-628.	2.4	40
59	Cerebral Microbleeds: Different Prevalence, Topography, and Risk Factors Depending on Dementia Diagnosis—The Karolinska Imaging Dementia Study. American Journal of Neuroradiology, 2015, 36, 661-666.	1.2	103
60	SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study. American Journal of Neuroradiology, 2015, 36, 1089-1095.	1.2	98
61	MRIâ€Defined Corpus Callosal Atrophy in Multiple Sclerosis: A Comparison of Volumetric Measurements, Corpus Callosum Area and Index. Journal of Neuroimaging, 2015, 25, 996-1001.	1.0	40
62	Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: Results of a 17-year longitudinal study. Multiple Sclerosis Journal, 2015, 21, 1151-1158.	1.4	63
63	IC-P-120: PREVALENCE, TOPOGRAPHY, AND RISK FACTORS OF CEREBRAL MICROBLEEDS IN DEMENTIA. , 2014, 10, P67-P68.		0
64	O5-02-01: PREVALENCE, TOPOGRAPHY, AND RISK FACTORS OF CEREBRAL MICROBLEEDS IN DEMENTIA. , 2014, 10, P290-P291.		0
65	Radiologically isolated syndrome – incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Multiple Sclerosis Journal, 2013, 19, 271-280.	1.4	116
66	Radiologically isolated syndrome: an uncommon finding at a university clinic in a high-prevalence region for multiple sclerosis. BMJ Open, 2013, 3, e003531.	0.8	13