Xiaodong Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8134173/publications.pdf

Version: 2024-02-01

83 papers 3,902 citations

33 h-index 60 g-index

84 all docs 84 docs citations

84 times ranked 5642 citing authors

#	Article	IF	CITATIONS
1	Three-Dimensional Crystalline/Amorphous Co/Co ₃ O ₄ Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters, 2015, 15, 6015-6021.	9.1	485
2	Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. Journal of Power Sources, 2015, 300, 336-343.	7.8	251
3	Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 5441-5448.	11.2	197
4	Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. Journal of Power Sources, 2014, 248, 745-751.	7.8	147
5	From Water Oxidation to Reduction: Transformation from Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanowires to NiCo/NiCoO _{<i>x</i>} Heterostructures. ACS Applied Materials & amp; Interfaces, 2016, 8, 3208-3214.	8.0	143
6	Converting CoMoO ₄ into CoO/MoO _{<i>x</i>} for Overall Water Splitting by Hydrogenation. ACS Sustainable Chemistry and Engineering, 2016, 4, 3743-3749.	6.7	134
7	In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 286, 119906.	20.2	133
8	Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11706-11715.	10.3	129
9	Effect of hydrogenation on the microwave absorption properties of BaTiO ₃ nanoparticles. Journal of Materials Chemistry A, 2015, 3, 12550-12556.	10.3	108
10	Partially amorphized MnMoO ₄ for highly efficient energy storage and the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 3683-3688.	10.3	86
11	FeNi ₃ /NiFeO <i></i> >Nanohybrids as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2016, 3, 1600368.	3.7	84
12	An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors. Nano-Micro Letters, 2020, 12, 63.	27.0	81
13	TiO ₂ Nanomaterials as Anode Materials for Lithiumâ€lon Rechargeable Batteries. Energy Technology, 2015, 3, 801-814.	3.8	79
14	Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2017, 497, 102-107.	9.4	78
15	A two-dimensional semiconducting covalent organic framework with nickel(<scp>ii</scp>) coordination for high capacitive performance. Journal of Materials Chemistry A, 2019, 7, 19676-19681.	10.3	68
16	Hierarchical trimetallic layered double hydroxide nanosheets derived from 2D metal-organic frameworks for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 264, 118532.	20.2	62
17	NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. International Journal of Hydrogen Energy, 2020, 45, 19206-19213.	7.1	61
18	A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti ^{IV} Complex for Photocatalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 17881-17886.	13.8	61

#	Article	IF	CITATIONS
19	One-pot, large-scale, simple synthesis of Co _x P nanocatalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 13011-13016.	10.3	59
20	One-pot synthesis of a highly porous anionic hypercrosslinked polymer for ultrafast adsorption of organic pollutants. Polymer Chemistry, 2018, 9, 4724-4732.	3.9	59
21	Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances, 2014, 4, 24986-24990.	3.6	56
22	Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance. Journal of Colloid and Interface Science, 2017, 505, 789-795.	9.4	52
23	A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors. Polymer Chemistry, 2020, 11, 47-52.	3.9	50
24	Simple and scalable synthesis of phosphorus and nitrogen enriched porous carbons with high volumetric capacitance. Electrochimica Acta, 2014, 136, 466-472.	5. 2	49
25	High-performance lead-free ferroelectric BZT–BCT and its application in energy fields. Journal of Materials Chemistry C, 2020, 8, 13530-13556.	5.5	42
26	Self-improving anodes for lithium-ion batteries: continuous interlamellar spacing expansion induced capacity increase in polydopamine-derived nitrogen-doped carbon tubes during cycling. Journal of Materials Chemistry A, 2015, 3, 20880-20885.	10.3	41
27	Hollow urchin-like NiO/NiCo2O4 heterostructures as highly efficient catalysts for selective oxidation of styrene. Journal of Colloid and Interface Science, 2018, 526, 295-301.	9.4	40
28	Black Titanium Dioxide Nanomaterials in Photocatalysis. International Journal of Photoenergy, 2017, 2017, 1-16.	2.5	39
29	Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity. Catalysis Science and Technology, 2016, 6, 4184-4191.	4.1	37
30	Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catalysis Today, 2016, 264, 243-249.	4.4	37
31	Tetrahedral metal–organic cages with cube-like cavities for selective encapsulation of fullerene guests and their spin-crossover properties. Chemical Communications, 2018, 54, 12646-12649.	4.1	36
32	Versatile bifunctional nitrogen-doped porous carbon derived from biomass in catalytic reduction of 4-nitrophenol and oxidation of styrene. Chinese Journal of Catalysis, 2020, 41, 1217-1229.	14.0	36
33	Eco-Friendly Fabricated Porous Carbon Nanofibers Decorated with Nanosized SnO _{<i>x</i>} as High-Performance Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2016, 4, 2951-2959.	6.7	34
34	Metal–organic layer derived metal hydroxide nanosheets for highly efficient oxygen evolution. Chemical Communications, 2019, 55, 5467-5470.	4.1	33
35	Li4Ti5O12 nanosheets assembled in tubular architecture for lithium storage. Chemical Engineering Journal, 2019, 361, 1371-1380.	12.7	33
36	The origin of the strong microwave absorption in black TiO2. Applied Physics Letters, 2016, 108, 183102.	3.3	32

3

#	Article	IF	CITATIONS
37	Phase-separation induced hollow/porous carbon nanofibers containing in situ generated ultrafine SnO _x as anode materials for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1331-1337.	5.9	32
38	NiCo2O4 nanoneedle-assembled hierarchical microflowers for highly selective oxidation of styrene. Catalysis Communications, 2018, 109, 71-75.	3.3	32
39	Crystalline–amorphous Co@CoO core–shell heterostructures for efficient electro-oxidation of hydrazine. Materials Chemistry Frontiers, 2018, 2, 96-101.	5.9	29
40	Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New Journal of Chemistry, 2019, 43, 16907-16914.	2.8	28
41	Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chemical Engineering Journal, 2021, 420, 129894.	12.7	28
42	Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO ₂ Nanobelts for Fast and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 19047-19058.	8.0	27
43	Ultrafine-grained NiCo layered double hydroxide nanosheets with abundant active edge sites for highly enhanced electro-oxidation of urea. Electrochimica Acta, 2021, 368, 137648.	5.2	27
44	Defects-rich nickel nanoparticles grown on nickel foam as integrated electrodes for electrocatalytic oxidation of urea. International Journal of Hydrogen Energy, 2019, 44, 27664-27670.	7.1	26
45	Ultrafine MoO ₃ nanoparticles embedded in porous carbon nanofibers as anodes for high-performance lithium-ion batteries. Materials Chemistry Frontiers, 2019, 3, 120-126.	5.9	25
46	Phase-dependent catalytic performance of MnO2 for solvent-free oxidation of ethybenzene with molecular oxygen. Applied Catalysis B: Environmental, 2022, 305, 121050.	20.2	25
47	Hydrogenation effects on the lithium ion battery performance of TiOF2. Journal of Power Sources, 2016, 306, 309-316.	7.8	24
48	Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting. Crystals, 2020, 10, 907.	2.2	24
49	Tunable pseudocapacitive contribution in nanosheet-constructed titania hierarchical tubes to achieve superior lithium-storage properties by phase control. Journal of Materials Chemistry A, 2018, 6, 24298-24310.	10.3	23
50	Revealing the surface structure-performance relationship of interface-engineered NiFe alloys for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 622, 986-994.	9.4	23
51	Ag ₂ Mo ₃ O ₁₀ Nanorods Decorated with Ag ₂ S Nanoparticles: Visibleâ€Light Photocatalytic Activity, Photostability, and Charge Transfer. Chemistry - A European Journal, 2015, 21, 18711-18716.	3.3	22
52	A zeolite supramolecular framework with LTA topology based on a tetrahedral metal–organic cage. Chemical Communications, 2019, 55, 1120-1123.	4.1	22
53	Intercalation-induced partial exfoliation of NiFe LDHs with abundant active edge sites for highly enhanced oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 607, 1353-1361.	9.4	21
54	Ti-doped SnOx encapsulated in Carbon nanofibers with enhanced lithium storage properties. Electrochimica Acta, 2014, 137, 9-16.	5.2	20

#	Article	IF	CITATIONS
55	Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Advanced Functional Materials, 2020, 30, 1907486.	14.9	20
56	Hierarchical NiCr hydroxide nanospheres with tunable domain boundaries for highly efficient urea electro-oxidation. Electrochimica Acta, 2021, 388, 138633.	5.2	19
57	Promoted selective oxidation of ethylbenzene in liquid phase achieved by hollow CeVO4 microspheres. Journal of Colloid and Interface Science, 2022, 614, 102-109.	9.4	18
58	Surface-reconstructed formation of hierarchical TiO ₂ mesoporous nanosheets with fast lithium-storage capability. Materials Chemistry Frontiers, 2021, 5, 3216-3225.	5.9	16
59	Improving the cyclability and rate capability of carbon nanofiber anodes through in-site generation of SiOx-rich overlayers. Electrochimica Acta, 2013, 108, 196-202.	5.2	15
60	Modifying oxide nanomaterials' properties by hydrogenation. MRS Communications, 2016, 6, 192-203.	1.8	15
61	Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Advances, 2016, 6, 42885-42891.	3.6	13
62	Experimental and theoretical investigation of the tuning of electronic structure in SnO ₂ <i>via</i> Co doping for enhanced styrene epoxidation catalysis. Catalysis Science and Technology, 2022, 12, 1499-1511.	4.1	13
63	Selective oxidation of <i>o</i> â€chlorotoluene to <i>o</i> â€chlorobenzaldehyde catalyzed by (Co,Mn)(Co,Mn) ₂ O ₄ catalysts. Canadian Journal of Chemical Engineering, 2018, 96, 1746-1751.	1.7	12
64	Tailoring the catalytic activity of nickel sites in NiFe ₂ O ₄ by cobalt substitution for highly enhanced oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 2668-2677.	4.9	12
65	2D Salphen-based heteropore covalent organic frameworks for highly efficient electrocatalytic water oxidation. Chemical Communications, 2021, 57, 13162-13165.	4.1	12
66	Resin-derived activated carbons with in-situ nitrogen doping and high specific surface area for high-performance supercapacitors. Materials Letters, 2017, 191, 178-181.	2.6	11
67	Camphor wood waste-derived microporous carbons as high-performance electrode materials for supercapacitors. Carbon Letters, 2019, 29, 213-218.	5.9	11
68	Electrochemically tuned cobalt hydroxide carbonate with abundant grain boundaries for highly efficient electro-oxidation of hydrazine. Materials Chemistry Frontiers, 2018, 2, 369-375.	5.9	10
69	Sulfur-doped NiCo carbonate hydroxide with surface sulfate groups for highly enhanced electro-oxidation of urea. Electrochimica Acta, 2022, 426, 140792.	5.2	10
70	Phosphorus groups assisted growth of vertically oriented polyaniline nanothorns on N/P co-doped carbon nanofibers for high-performance supercapacitors. Electrochimica Acta, 2016, 216, 355-363.	5.2	9
71	Supramolecular assemblies based on Fe ₈ L ₁₂ cubic metal–organic cages: synergistic adsorption and spin-crossover properties. Dalton Transactions, 2020, 49, 4220-4224.	3.3	9
72	Diarylethene-based conjugated polymer networks for ultrafast photochromic films. New Journal of Chemistry, 2019, 43, 15797-15803.	2.8	7

#	Article	IF	CITATIONS
73	Cerium oxide carbonate/nickel hydroxide hybrid nanowires with enhanced performance and stability for urea electrooxidation. Journal of Electroanalytical Chemistry, 2021, 895, 115457.	3.8	7
74	Room-temperature synthesis of Ni _{1â^'x} Fe _x (oxy)hydroxides: structureâ€"activity relationship for the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 932-939.	4.9	6
75	Bivariate Metal–Organic Frameworks with Tunable Spinâ€Crossover Properties. Chemistry - A European Journal, 2020, 26, 12472-12480.	3 . 3	6
76	Single crystal to single crystal transformation of spin-crossover coordination polymers from 3D frameworks to 2D layers. Journal of Materials Chemistry C, 2021, 9, 5082-5087.	5 . 5	6
77	Tailored Ceramic–Metal Piezocomposite Energy Harvester with High Current Output by Controlling the Electrical Impedance. ACS Applied Electronic Materials, 2022, 4, 3679-3685.	4.3	6
78	Hierarchical nano-on-micro copper with enhanced catalytic activity towards electro-oxidation of hydrazine. Frontiers of Materials Science, 2018, 12, 45-52.	2.2	4
79	Effect of direct current and alternating current poling on the piezoelectric properties of BaO.85CaO.15TiO.9ZrO.1O3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 27815.	2.2	4
80	Black Titanium Dioxide (TiO ₂) Nanomaterials. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 1-26.	0.1	2
81	Synthesis and Properties of Hydrogenated Black TiO ₂ Nanomaterials., 2017,, 5-32.		2
82	Bonding Fe(hafc)2TDMA onto the surface of nickel metal organic frameworks for highly efficient oxygen evolution reaction. Materials Letters, 2020, 277, 128339.	2.6	2
83	Steered polymorphic nanodomains in TiO ₂ to boost visible-light photocatalytic oxidation. RSC Advances, 2022, 12, 9660-9670.	3.6	1