
Shuang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8134021/publications.pdf Version: 2024-02-01

SHUANCLUL

#	Article	IF	CITATIONS
1	Effects of anthropogenic water regulation and groundwater lateral flow on land processes. Journal of Advances in Modeling Earth Systems, 2016, 8, 1106-1131.	3.8	63
2	Global Land Surface Modeling Including Lateral Groundwater Flow. Journal of Advances in Modeling Earth Systems, 2018, 10, 1882-1900.	3.8	51
3	Global river water warming due to climate change and anthropogenic heat emission. Global and Planetary Change, 2020, 193, 103289.	3.5	51
4	Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China. Hydrology and Earth System Sciences, 2016, 20, 2333-2352.	4.9	46
5	A Highâ€Resolution Land Model With Groundwater Lateral Flow, Water Use, and Soil Freezeâ€Thaw Front Dynamics and its Applications in an Endorheic Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7204-7222.	3.3	42
6	Effects of anthropogenic nitrogen discharge on dissolved inorganic nitrogen transport in global rivers. Global Change Biology, 2019, 25, 1493-1513.	9.5	42
7	Seasonal effects of irrigation on land–atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin. Earth System Dynamics, 2017, 8, 113-127.	7.1	30
8	Efficiency enhancement of a process-based rainfall–runoff model using a new modified AdaBoost.RT technique. Applied Soft Computing Journal, 2014, 23, 521-529.	7.2	29
9	A New Frozen Soil Parameterization Including Frost and Thaw Fronts in the Community Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 659-679.	3.8	27
10	Topographical and geological variation of effective rainfall for debris-flow occurrence from a large-scale perspective. Geomorphology, 2020, 358, 107134.	2.6	20
11	Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation. Advances in Climate Change Research, 2017, 8, 68-79.	5.1	11
12	Comprehensive Evaluation of Satelliteâ€Based Precipitation at Subâ€Daily Time Scales Over a Highâ€Profile Watershed with Complex Terrain. Earth and Space Science, 2019, 6, 2347-2361.	2.6	11
13	Effects of Anthropogenic Disturbances and Climate Change on Riverine Dissolved Inorganic Nitrogen Transport. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002234.	3.8	10
14	Land Surface Model CAS‣SM: Model Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002339.	3.8	10
15	An innovative method for dynamic update of initial water table in XXT model based on neural network technique. Applied Soft Computing Journal, 2013, 13, 4185-4193.	7.2	9
16	Impact of groundwater extraction on hydrological process over the Beijing-Tianjin-Hebei region, China. Journal of Hydrology, 2022, 609, 127689.	5.4	9
17	Discharge Estimation for an Ungauged Inland River in an Arid Area Related to Anthropogenic Activities: A Case Study of Heihe River Basin, Northwestern China. Advances in Meteorology, 2016, 2016, 1-11.	1.6	8
18	Ensemble learning of daily river discharge modeling for two watersheds with different climates. Atmospheric Science Letters, 2020, 21, e1000.	1.9	8

Shuang Liu

#	Article	IF	CITATIONS
19	Landscape change in response to multiperiod glacial debris flows in Peilong catchment, southeastern Tibet. Journal of Mountain Science, 2021, 18, 567-582.	2.0	8
20	Implementation of Groundwater Lateral Flow and Human Water Regulation in CASâ€FGOALSâ€g3. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032289.	3.3	7
21	Broad valleys and barrier dams in upstream Brahmaputra efficiently retain Tibetan-sourced sediments: Evidence from palaeoflood records. Quaternary Science Reviews, 2022, 285, 107538.	3.0	6
22	Optimal water use strategies for mitigating high urban temperatures. Hydrology and Earth System Sciences, 2021, 25, 387-400.	4.9	5
23	Spatial distribution of debris flow-prone catchments in Hengduan mountainous area in southwestern China. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	5
24	New Insights into Ice Avalanche-Induced Debris Flows in Southeastern Tibet Using SAR Technology. Remote Sensing, 2022, 14, 2603.	4.0	4
25	Coupling of the CASâ€LSM Landâ€Surface Model With the CASâ€FGOALSâ€g3 Climate System Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002171.	3.8	3
26	Classification and sediment estimation for debris flow-prone catchments in the Parlung Zangbo Basin on the southeastern Tibet. Geomorphology, 2022, 413, 108348.	2.6	3
27	Field observation of debris-flow activities in the initiation area of the Jiangjia Gully, Yunnan Province, China. Journal of Mountain Science, 2022, 19, 1602-1617.	2.0	3
28	Applicability of Modified TOPMODEL in the Arid Zone and the Humid Zone. Applied Mechanics and Materials, 0, 423-426, 1418-1421.	0.2	2
29	Quantitative Analysis of the Effects of an Earthquake on Rainfall Thresholds for Triggering Debris-Flow Events. Frontiers in Earth Science, 2021, 9, .	1.8	2
30	Recent two runoff-triggered debris flow events in Tibet Plateau, China. Landslides, 2022, 19, 2409-2422.	5.4	2
31	A New Clustering Algorithm Toward Building Segmentation From Aerial Images by Utilizing RGB Component Differences. Earth and Space Science, 2021, 8, e2020EA001571.	2.6	0