Natasja G De Groot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics, 2022, , 1.	2.4	6
2	Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics, 2022, , 1.	2.4	4
3	Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. Journal of Immunology, 2021, 206, 1957-1965.	0.8	1
4	Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Frontiers in Immunology, 2021, 12, 722181.	4.8	15
5	The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Frontiers in Immunology, 2021, 12, 716289.	4.8	8
6	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	2.4	17
7	Fullâ€length MHC class II alleles in three New World monkey species. Hla, 2020, 95, 163-165.	0.6	0
8	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	2.4	14
9	The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Frontiers in Immunology, 2020, 11, 582804.	4.8	15
10	Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan) Tj ETQq0 0 0 rgE BMC Evolutionary Biology, 2020, 20, 119.	T /Overloct 3.2	2 10 Tf 50 38
11	Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. International Journal of Immunogenetics, 2020, 47, 243-260.	1.8	24
12	COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males?. Immunogenetics, 2020, 72, 275-277.	2.4	36
13	Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. Journal of Immunology, 2020, 204, 1770-1786.	0.8	12
14	The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. Journal of Virology, 2020, 94, .	3.4	2
15	Analysis of macaque BTN3A genes and transcripts in the extended MHC: conserved orthologs of human Î ³ δT cell modulators. Immunogenetics, 2019, 71, 545-559.	2.4	3
16	Humans and Chimpanzees Display Opposite Patterns of Diversity in <i>Arylamine N-Acetyltransferase</i> Genes. G3: Genes, Genomes, Genetics, 2019, 9, 2199-2224.	1.8	9
17	Limited MHC class II gene polymorphism in the West African chimpanzee is distributed maximally by haplotype diversity. Immunogenetics, 2019, 71, 13-23.	2.4	8
18	Human and Rhesus MacaqueKIRHaplotypes Defined by Their Transcriptomes. Journal of Immunology, 2018, 200, ji1701480.	0.8	23

Natasja G De Groot

#	Article	IF	CITATIONS
19	Extensive Alternative Splicing of KIR Transcripts. Frontiers in Immunology, 2018, 9, 2846.	4.8	32
20	Does the MHC Confer Protection against Malaria in Bonobos?. Trends in Immunology, 2018, 39, 768-771.	6.8	13
21	Two Orangutan Species Have Evolved Different <i>KIR</i> Alleles and Haplotypes. Journal of Immunology, 2017, 198, 3157-3169.	0.8	13
22	Limited MHC class I intron 2 repertoire variation in bonobos. Immunogenetics, 2017, 69, 677-688.	2.4	15
23	A Specialist Macaque MHC Class I Molecule with HLA-B*27–like Peptide-Binding Characteristics. Journal of Immunology, 2017, 199, 3679-3690.	0.8	11
24	AIDS in chimpanzees: the role of MHC genes. Immunogenetics, 2017, 69, 499-509.	2.4	10
25	The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics, 2017, 69, 87-99.	2.4	15
26	IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Research, 2017, 45, D860-D864.	14.5	168
27	Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans. Journal of Immunology, 2016, 196, 750-758.	0.8	15
28	Strong Vaccine-Induced CD8 T-Cell Responses Have Cytolytic Function in a Chimpanzee Clearing HCV Infection. PLoS ONE, 2014, 9, e95103.	2.5	10
29	The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future?. Retrovirology, 2013, 10, 53.	2.0	39
30	Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics, 2013, 65, 569-584.	2.4	44
31	Unique peptide-binding motif for Mamu-B*037:01: an MHC class I allele common to Indian and Chinese rhesus macaques. Immunogenetics, 2013, 65, 897-900.	2.4	5
32	The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics, 2013, 65, 841-849.	2.4	21
33	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	2.4	82
34	AIDS-protective HLA-B*27/B*57 and chimpanzee MHC class I molecules target analogous conserved areas of HIV-1/SIV _{cpz} . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15175-15180.	7.1	49
35	The chimpanzee Mhc-DRB region revisited: Gene content, polymorphism, pseudogenes, and transcripts. Molecular Immunology, 2009, 47, 381-389.	2.2	20
36	Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Molecular Ecology, 2008, 17, 2074-2088.	3.9	44

#	Article	IF	CITATIONS
37	Reactivation by exon shuffling of a conserved <i>HLA-DR3</i> -like pseudogene segment in a New World primate species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5864-5868.	7.1	42
38	Reduced MIC Gene Repertoire Variation in West African Chimpanzees as Compared to Humans. Molecular Biology and Evolution, 2005, 22, 1375-1385.	8.9	34
39	Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11748-11753.	7.1	143
40	Major histocompatibility complex class I diversity in a West African chimpanzee population: implications for HIV research. Immunogenetics, 2000, 51, 398-409.	2.4	53
41	Unprecedented Polymorphism of Mhc-DRB Region Configurations in Rhesus Macaques. Journal of Immunology, 2000, 164, 3193-3199.	0.8	77
42	Major histocompatibility complex class II polymorphisms in primates. Immunological Reviews, 1999, 167, 339-350.	6.0	169