Natasja G De Groot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813356/publications.pdf

Version: 2024-02-01

42 papers 1,325 citations

471509 17 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

1229 citing authors

#	Article	IF	CITATIONS
1	Major histocompatibility complex class II polymorphisms in primates. Immunological Reviews, 1999, 167, 339-350.	6.0	169
2	IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Research, 2017, 45, D860-D864.	14.5	168
3	Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11748-11753.	7.1	143
4	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	2.4	82
5	Unprecedented Polymorphism of Mhc-DRB Region Configurations in Rhesus Macaques. Journal of Immunology, 2000, 164, 3193-3199.	0.8	77
6	Major histocompatibility complex class I diversity in a West African chimpanzee population: implications for HIV research. Immunogenetics, 2000, 51, 398-409.	2.4	53
7	AIDS-protective HLA-B*27/B*57 and chimpanzee MHC class I molecules target analogous conserved areas of HIV-1/SIV _{cpz} . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15175-15180.	7.1	49
8	Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Molecular Ecology, 2008, 17, 2074-2088.	3.9	44
9	Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics, 2013, 65, 569-584.	2.4	44
10	Reactivation by exon shuffling of a conserved <i>HLA-DR3 </i> -like pseudogene segment in a New World primate species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5864-5868.	7.1	42
11	The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future?. Retrovirology, 2013, 10, 53.	2.0	39
12	COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males?. Immunogenetics, 2020, 72, 275-277.	2.4	36
13	Reduced MIC Gene Repertoire Variation in West African Chimpanzees as Compared to Humans. Molecular Biology and Evolution, 2005, 22, 1375-1385.	8.9	34
14	Extensive Alternative Splicing of KIR Transcripts. Frontiers in Immunology, 2018, 9, 2846.	4.8	32
15	Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. International Journal of Immunogenetics, 2020, 47, 243-260.	1.8	24
16	Human and Rhesus MacaqueKIRHaplotypes Defined by Their Transcriptomes. Journal of Immunology, 2018, 200, ji1701480.	0.8	23
17	The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics, 2013, 65, 841-849.	2.4	21
18	The chimpanzee Mhc-DRB region revisited: Gene content, polymorphism, pseudogenes, and transcripts. Molecular Immunology, 2009, 47, 381-389.	2.2	20

#	Article	IF	Citations
19	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	2.4	17
20	Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans. Journal of Immunology, 2016, 196, 750-758.	0.8	15
21	Limited MHC class I intron 2 repertoire variation in bonobos. Immunogenetics, 2017, 69, 677-688.	2.4	15
22	The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics, 2017, 69, 87-99.	2.4	15
23	The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Frontiers in Immunology, 2020, $11,582804$.	4.8	15
24	Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Frontiers in Immunology, 2021, 12, 722181.	4.8	15
25	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	2.4	14
26	Two Orangutan Species Have Evolved Different <i>KIR</i> Alleles and Haplotypes. Journal of Immunology, 2017, 198, 3157-3169.	0.8	13
27	Does the MHC Confer Protection against Malaria in Bonobos?. Trends in Immunology, 2018, 39, 768-771.	6.8	13
28	Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. Journal of Immunology, 2020, 204, 1770-1786.	0.8	12
29	A Specialist Macaque MHC Class I Molecule with HLA-B*27–like Peptide-Binding Characteristics. Journal of Immunology, 2017, 199, 3679-3690.	0.8	11
30	Strong Vaccine-Induced CD8 T-Cell Responses Have Cytolytic Function in a Chimpanzee Clearing HCV Infection. PLoS ONE, 2014, 9, e95103.	2.5	10
31	AIDS in chimpanzees: the role of MHC genes. Immunogenetics, 2017, 69, 499-509.	2.4	10
32	Humans and Chimpanzees Display Opposite Patterns of Diversity in <i>Arylamine N-Acetyltransferase</i> Genes. G3: Genes, Genomes, Genetics, 2019, 9, 2199-2224.	1.8	9
33	Limited MHC class II gene polymorphism in the West African chimpanzee is distributed maximally by haplotype diversity. Immunogenetics, 2019, 71, 13-23.	2.4	8
34	The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Frontiers in Immunology, 2021, 12, 716289.	4.8	8
35	Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics, 2022, , $1.$	2.4	6
36	Unique peptide-binding motif for Mamu-B*037:01: an MHC class I allele common to Indian and Chinese rhesus macaques. Immunogenetics, 2013, 65, 897-900.	2.4	5

#	Article	IF	CITATIONS
37	Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics, 2022, , $1.$	2.4	4
38	Analysis of macaque BTN3A genes and transcripts in the extended MHC: conserved orthologs of human $\hat{I}^3\hat{I}'T$ cell modulators. Immunogenetics, 2019, 71, 545-559.	2.4	3
39	Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan) Tj ETQq1 1 0.7843	314 rgBT / 3.2	Overlock 10° 2
40	The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. Journal of Virology, 2020, 94, .	3.4	2
41	Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. Journal of Immunology, 2021, 206, 1957-1965.	0.8	1
42	Fullâ€length MHC class II alleles in three New World monkey species. Hla, 2020, 95, 163-165.	0.6	0