Ilana Timokhina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8133305/publications.pdf

Version: 2024-02-01

394286 395590 1,144 41 19 33 citations h-index g-index papers 42 42 42 919 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Clustering and Precipitation in Ferritic Microalloyed Steels. , 2022, , 12-25.		1
2	Interface characteristics and precipitation during the austenite-to-ferrite transformation of a Ti-Mo microalloyed steel. Journal of Alloys and Compounds, 2022, 893, 162224.	2.8	4
3	Clustering, nano-scale precipitation and strengthening of steels. Progress in Materials Science, 2021, 118, 100764.	16.0	103
4	Interphase precipitation hardening of a TiMo microalloyed dual-phase steel produced by continuous cooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140518.	2.6	10
5	On the grain boundary network characteristics in a dual phase steel. Journal of Materials Science, 2021, 56, 19674-19686.	1.7	3
6	Mechanical twinning and texture evolution during asymmetric warm rolling of a high manganese steel. Materials Science & Drocessing, 2019, 764, 138183.	2.6	15
7	Tempering Reactions and Elemental Redistribution During Tempering of Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3663-3673.	1.1	12
8	Study of Nb non-equilibrium segregation at prior austenite grain boundary in welding using atom probe tomography and modeling. Journal of Materials Science, 2019, 54, 11320-11327.	1.7	4
9	The effect of strain on interphase precipitation characteristics in a Ti-Mo steel. Acta Materialia, 2019, 170, 75-86.	3.8	44
10	Transformation from cluster to nano-precipitate in microalloyed ferritic steel. Scripta Materialia, 2019, 160, 53-57.	2.6	46
11	Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2069-2083.	1.1	4
12	Influence of rolling asymmetry on the microstructure, texture and mechanical behavior of high-manganese twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 172-180.	2.6	15
13	Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels. Materials and Design, 2018, 141, 48-56.	3.3	37
14	Deformation-Induced Phase Transformations. Metals, 2018, 8, 886.	1.0	3
15	Characterization of Nb Interface Segregation During Welding Thermal Cycle in Microalloyed Steel by Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6224-6230.	1.1	10
16	Bake hardening of automotive steels. , 2017, , 259-288.		11
17	Role of shear in interface formation of aluminium-steel multilayered composite sheets. Materials Science & Science & Properties, Microstructure and Processing, 2017, 705, 142-152.	2.6	35
18	Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel. Journal of Alloys and Compounds, 2017, 690, 621-632.	2.8	54

#	Article	IF	CITATIONS
19	The Nitrocarburising Response of Low Temperature Bainite Steel. Metals, 2017, 7, 234.	1.0	9
20	On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques. Materials and Design, 2016, 111, 222-229.	3.3	44
21	The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4883-4895.	1.1	31
22	Nanocrystalline Ti Produced by Cryomilling and Consolidation by Severe Plastic Deformation. Metals, 2015, 5, 206-215.	1.0	7
23	On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 589, 303-309.	2.6	28
24	Selective Dissolution of Retained Austenite in Nanostructured Bainitic Steels. Advanced Engineering Materials, 2014, 16, 442-444.	1.6	8
25	A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 224-231.	2.6	58
26	The Formation of Complex Microstructures After Different Deformation Modes in Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4247-4256.	1.1	4
27	On the Low Temperature Strain Aging of Bainite in the TRIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5177-5191.	1.1	19
28	Understanding the Behavior of Advanced High-Strength Steels Using Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3958-3971.	1,1	37
29	Effect of bainitic transformation on bake hardening in TRIP assisted steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 485-494.	2.6	27
30	Constitutive Modeling of the Tensile Behavior of Al-TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 479-490.	1.1	52
31	Local Laser Heat Treatment in Dual-Phase Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1244-1258.	1.1	15
32	Deformation mechanisms in an ultra-fine grained Al alloy. International Journal of Materials Research, 2009, 100, 1679-1685.	0.1	5
33	Crystallographic analysis of nanobainitic steels. Scripta Materialia, 2009, 60, 455-458.	2.6	81
34	Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3294-3303.	1,1	26
35	Processing and properties of ultrafine-grain aluminium alloy 6111 sheet. Journal of Materials Processing Technology, 2008, 200, 441-450.	3.1	35
36	Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding. Acta Materialia, 2008, 56, 2223-2230.	3.8	113

#	Article	IF	CITATIONS
37	Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scripta Materialia, 2008, 58, 163-166.	2.6	65
38	Characterization of clusters and ultrafine precipitates in Nb-containing C–Mn–Si steels. Scripta Materialia, 2006, 54, 471-476.	2.6	58
39	Application of Advanced Experimental Techniques for the Microstructural Characterization of Nanobainitic Steels. Solid State Phenomena, 0, 172-174, 1249-1254.	0.3	4
40	Understanding of the Bainite Transformation in a Nano-Structured Bainitic Steel. Solid State Phenomena, 0, 172-174, 123-128.	0.3	7
41	Effect of Temperature on Mechanical Behaviour of High Manganese TWIP Steel. Materials Science Forum, 0, 773-774, 257-262.	0.3	0