
Ruben Mas Balleste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8133202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Activity–Stability Balance of Photocatalytic Organic Materials for Oxidative Coupling Reactions. ACS Applied Materials & Interfaces, 2022, 14, 16258-16268.	4.0	16
2	Predesigned Covalent Organic Frameworks as Effective Platforms for Pd(II) Coordination Enabling Cross oupling Reactions under Sustainable Conditions. Advanced Sustainable Systems, 2022, 6, .	2.7	11
3	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Research, 2021, 14, 458-465.	5.8	12
4	Photocatalytic Oxidation Reactions Mediated by Covalent Organic Frameworks and Related Extended Organic Materials. Frontiers in Chemistry, 2021, 9, 708312.	1.8	10
5	Enantioselective Inverse-Electron Demand Aza-Diels–Alder Reaction: ipso,α-Selectivity of Silyl Dienol Ethers. ACS Catalysis, 2021, 11, 12133-12145.	5.5	17
6	Photoredox Heterobimetallic Dual Catalysis Using Engineered Covalent Organic Frameworks. ACS Catalysis, 2021, 11, 12344-12354.	5.5	59
7	Engineering covalent organic frameworks in the modulation of photocatalytic degradation of pollutants under visible light conditions. Materials Today Chemistry, 2021, 22, 100548.	1.7	16
8	Solvent-Free Visible Light Photocatalytic Oxidation Processes Mediated by Transparent Films of an Imine-Based Organic Polymer. Catalysts, 2021, 11, 1426.	1.6	1
9	Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure–property relationships through nanomechanics. Nanoscale, 2020, 12, 1128-1137.	2.8	20
10	Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
11	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	1.6	47
12	Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catalysis, 2020, 10, 5335-5346.	5.5	34
13	The role of catalyst–support interactions in oxygen evolution anodes based on Co(OH) ₂ nanoparticles and carbon microfibers. Catalysis Science and Technology, 2020, 10, 4513-4521.	2.1	9
14	Incorporation of photocatalytic Pt(II) complexes into imine-based layered covalent organic frameworks (COFs) through monomer truncation strategy. Applied Catalysis B: Environmental, 2020, 272, 119027.	10.8	64
15	Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.	1.6	17
16	Enantioselective Conjugate Azidation of <i>α,β</i> â€Unsaturated Ketones under Bifunctional Organocatalysis by Direct Activation of TMSN ₃ . Advanced Synthesis and Catalysis, 2019, 361, 4790-4796.	2.1	19
17	Imineâ€Based Covalent Organic Frameworks as Photocatalysts for Metal Free Oxidation Processes under Visible Light Conditions. ChemCatChem, 2019, 11, 4916-4922.	1.8	59
18	Switching acidic and basic catalysis through supramolecular functionalization in a porous 3D covalent imine-based material. Catalysis Science and Technology, 2019, 9, 6007-6014.	2.1	10

RUBEN MAS BALLESTE

#	Article	IF	CITATIONS
19	Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nature Communications, 2019, 10, 2634.	5.8	38
20	Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Chargeâ€Transfer States in Photoredox Catalysis. ChemPhotoChem, 2019, 3, 609-612.	1.5	8
21	Ruthenium Nanoparticles Supported on Carbon Microfibers for Hydrogen Evolution Electrocatalysis. European Journal of Inorganic Chemistry, 2019, 2019, 2071-2077.	1.0	16
22	Single-Crystal-to-Single-Crystal Postsynthetic Modification of a Metal–Organic Framework via Ozonolysis. Journal of the American Chemical Society, 2018, 140, 2028-2031.	6.6	51
23	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	1.7	6
24	Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.	1.8	13
25	Visible‣ight Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie - International Edition, 2017, 56, 7826-7830.	7.2	47
26	Visibleâ€Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie, 2017, 129, 7934-7938.	1.6	8
27	Asymmetric Synthesis of Rauhut–Currier type Products by a Regioselective Mukaiyama Reaction under Bifunctional Catalysis. Journal of the American Chemical Society, 2017, 139, 672-679.	6.6	57
28	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.2	3
29	Effect of electronic and steric properties of 8-substituted quinolines in gold(III) complexes: Synthesis, electrochemistry, stability, interactions and antiproliferative studies. Journal of Inorganic Biochemistry, 2017, 174, 111-118.	1.5	16
30	Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. Journal of Materials Chemistry A, 2017, 5, 4343-4351.	5.2	91
31	Synthesis of 3â€Benzazepines by Metalâ€Free Oxidative C–H Bond Functionalization–Ring Expansion Tandem Reaction. Advanced Synthesis and Catalysis, 2016, 358, 4049-4056.	2.1	32
32	Stereodivergent Aminocatalytic Synthesis of Z - and E -Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16329-16329.	1.7	0
33	Stereodivergent Aminocatalytic Synthesis of <i>Z</i> ―and <i>E</i> â€Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16467-16477.	1.7	4
34	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	2.2	109
35	Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Applied Materials Today, 2016, 2, 17-23.	2.3	17
36	Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sensors and Actuators B: Chemical, 2016, 222, 331-338.	4.0	44

RUBEN MAS BALLESTE

#	Article	IF	CITATIONS
37	S–S Bond Activation in Multiâ€Copper ÂAggregates Containing Perthiocarboxylato Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 4044-4054.	1.0	4
38	Direct On‣urface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. Chemistry - A European Journal, 2015, 21, 10666-10670.	1.7	131
39	Oneâ€Pot Asymmetric Synthesis of Cyclopropanes with Quaternary Centers Starting From Bromonitroalkenes under Aminocatalytic Conditions. ChemPlusChem, 2015, 80, 1595-1600.	1.3	9
40	Highly dense nickel hydroxide nanoparticles catalyst electrodeposited from a novel Ni(II) paddle–wheel complex. Journal of Catalysis, 2015, 329, 22-31.	3.1	11
41	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ 0 ₂ . Chemical Communications, 2015, 51, 14992-14995.	2.2	4
42	Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies. Journal of Inorganic Biochemistry, 2015, 153, 339-345.	1.5	27
43	Structural Insights into Magnetic Clusters Grown Inside Virus Capsids. ACS Applied Materials & Interfaces, 2014, 6, 20936-20942.	4.0	23
44	Electrochemically Generated Nanoparticles of Halogenâ€Bridged Mixedâ€Valence Binuclear Metal Complex Chains. Chemistry - A European Journal, 2014, 20, 7107-7115.	1.7	2
45	On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni··À·Pt Paddlewheel Complexes. Inorganic Chemistry, 2014, 53, 10553-10562.	1.9	6
46	Highly Enantioselective Construction of Tricyclic Derivatives by the Desymmetrization of Cyclohexadienones. Angewandte Chemie - International Edition, 2014, 53, 8184-8189.	7.2	68
47	Supramolecular Attachment of Metalloporphyrins to Graphene Oxide and its Pyridine ontaining Derivative. Chemistry - A European Journal, 2013, 19, 10463-10467.	1.7	7
48	Some Pictures of Alcoholic Dancing: From Simple to Complex Hydrogen-Bonded Networks Based on Polyalcohols. Journal of Physical Chemistry C, 2013, 117, 4680-4690.	1.5	18
49	The Isolation of Single MMX Chains from Solution: Unravelling the Assembly–Disassembly Process. Chemistry - A European Journal, 2013, 19, 15518-15529.	1.7	7
50	Tuning delamination of layered covalent organic frameworks through structural design. Chemical Communications, 2012, 48, 7976.	2.2	92
51	Formation of a surface covalent organic framework based on polyester condensation. Chemical Communications, 2012, 48, 6779.	2.2	82
52	Patterned conductive nanostructures from reversible self-assembly of 1D coordination polymer. Chemical Science, 2012, 3, 2047.	3.7	28
53	Supramolecular Assembly of Diplatinum Species through Weak Pt ^{II} â‹â‹â‹Pt ^{II} Intermolecular Interactions: A Combined Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 13787-13799.	1.7	15
54	Breaking C–F Bonds via Nucleophilic Attack of Coordinated Ligands: Transformations from C–F to C–X Bonds (X= H, N, O, S). Organometallics, 2012, 31, 1245-1256.	1.1	110

#	Article	IF	CITATIONS
55	Intramolecular Gasâ€Phase Reactions of Synthetic Nonheme Oxoiron(IV) Ions: Proximity and Spinâ€&tate Reactivity Rules. Chemistry - A European Journal, 2012, 18, 11747-11760.	1.7	15
56	The Structural Diversity Triggered by Intermolecular Interactions between Au ^I S ₂ Groups: Aurophilia and Beyond. Chemistry - A European Journal, 2012, 18, 9965-9976.	1.7	22
57	O–O Bond activation in H2O2 and (CH3)3C-OOH mediated by [Ni(cyclam)(CH3CN)2](ClO4)2: Different mechanisms to form the same Ni(iii) product?. Dalton Transactions, 2011, 40, 6868.	1.6	15
58	2D materials: to graphene and beyond. Nanoscale, 2011, 3, 20-30.	2.8	1,395
59	Carbon nanotubes growth on silicon nitride substrates. Materials Letters, 2011, 65, 1479-1481.	1.3	7
60	Delamination of Layered Covalent Organic Frameworks. Small, 2011, 7, 1207-1211.	5.2	234
61	Modeling the <i>cis</i> â€Oxoâ€Labile Binding Site Motif of Nonâ€Heme Iron Oxygenases: Water Exchange and Oxidation Reactivity of a Nonâ€Heme Iron(IV)â€Oxo Compound Bearing a Tripodal Tetradentate Ligand. Chemistry - A European Journal, 2011, 17, 1622-1634.	1.7	105
62	One-dimensional coordination polymers on surfaces: towards single molecule devices. Chemical Society Reviews, 2010, 39, 4220.	18.7	124
63	S–S bond reactivity in metal-perthiocarboxylato compounds. Dalton Transactions, 2010, 39, 1511-1518.	1.6	8
64	Nuclearity control in gold dithiocarboxylato compounds. CrystEngComm, 2010, 12, 2332.	1.3	19
65	Ironâ€Promoted <i>ortho</i> ―and/or <i>ipso</i> â€Hydroxylation of Benzoic Acids with H ₂ O ₂ . Chemistry - A European Journal, 2009, 15, 13171-13180.	1.7	93
66	Towards Molecular Wires Based on Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 2885-2896.	1.0	55
67	Nanofibers generated by self-assembly on surfaces of bimetallic building blocks. Dalton Transactions, 2009, , 7341.	1.6	14
68	Aromatic C–F activation by complexes containing the {Pt2S2} core via nucleophilic substitution: a combined experimental and theoretical study. Dalton Transactions, 2009, , 5980.	1.6	24
69	Tyrosinaseâ€Like Reactivity in a Cu ^{III} ₂ (μâ€O) ₂ Species. Chemistry - A European Journal, 2008, 14, 3535-3538.	1.7	73
70	Contrasting <i>cis</i> and <i>trans</i> Effects on the Reactivity of Nonheme Oxoiron(IV) Complexes. Angewandte Chemie - International Edition, 2008, 47, 1896-1899.	7.2	42
71	Csp3–F bond activation by nucleophilic attack of the {Pt2S2} core assisted by non-covalent interactions. Chemical Communications, 2008, , 3130.	2.2	26
72	High-valent iron-mediated cis-hydroxyacetoxylation of olefins. Dalton Transactions, 2008, , 1828.	1.6	33

RUBEN MAS BALLESTE

#	Article	IF	CITATIONS
73	Bio-Inspired Iron-Catalyzed Olefin Oxidations. , 2008, , 451-469.		1
74	Non-heme iron(ii) complexes are efficient olefin aziridination catalysts. Chemical Communications, 2007, , 2063.	2.2	53
75	Fast O2Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands. Inorganic Chemistry, 2007, 46, 4997-5012.	1.9	43
76	Iron-Catalyzed Olefin Epoxidation in the Presence of Acetic Acid:  Insights into the Nature of the Metal-Based Oxidant. Journal of the American Chemical Society, 2007, 129, 15964-15972.	6.6	284
77	Reaction Chemistry of Complexes Containing PtH, PtSH, or PtS Fragments: From Their Apparent Simplicity to the Maze of Reactions Underlying Their Interconversion. Chemistry - A European Journal, 2007, 13, 1047-1063.	1.7	17
78	C–S Bond Activation and Partial Hydrogenation of Thiophene by a Dinuclear Trihydride Platinum Complex. European Journal of Inorganic Chemistry, 2007, 2007, 5707-5719.	1.0	17
79	Isomeric Molecular Rectangles Resulting from Self-Assembly of Dicopper Complexes of Macrocyclic Ligands. Inorganic Chemistry, 2006, 45, 2501-2508.	1.9	19
80	Bio-inspired iron-catalyzed olefin oxidation. Additive effects on the cis-diol/epoxide ratio. Journal of Molecular Catalysis A, 2006, 251, 49-53.	4.8	25
81	Aliphatic C–X (X=halogen) bond activation by transition metal complexes containing the {Pt2S2} core: A theoretical study of the reaction mechanism. Inorganica Chimica Acta, 2006, 359, 3736-3744.	1.2	12
82	Ligand Topology Effects on Olefin Oxidations by Bio-Inspired [Fell(N2Py2)] Catalysts. Chemistry - A European Journal, 2006, 12, 7489-7500.	1.7	86
83	Catalytic Epoxidation and 1,2-Dihydroxylation of Olefins with Bispidine–Iron(II)/H2O2 Systems. Angewandte Chemie - International Edition, 2006, 45, 3446-3449.	7.2	144
84	CHEMISTRY: Targeting Specific C-H Bonds for Oxidation. Science, 2006, 312, 1885-1886.	6.0	39
85	Influence of the terminal ligands on the redox properties of the {Pt2(Âμ-S)2} core in [Pt2(Ph2X(CH2)2XPh2)2(Aμ-S)2](X = P or As) complexes and on their reactivity towards metal centres, protic acids and organic electrophiles. Dalton Transactions, 2005, , 2742.	1.6	28
86	Metalâ^'Peroxo versus Metalâ^'Oxo Oxidants in Non-Heme Iron-Catalyzed Olefin Oxidations:Â Computational and Experimental Studies on the Effect of Water. Journal of the American Chemical Society, 2005, 127, 6548-6549.	6.6	94
87	A Novel Route to Multinuclear d8 Metalâ^'Chalcogen Compounds with Nuclearity Control. European Journal of Inorganic Chemistry, 2004, 2004, 3223-3227.	1.0	11
88	Extending The Reaction Landscape of the {Pt(μâ€5) 2 Pt} Core: From Metal Centers to Nonâ€Metallic Electrophiles. European Journal of Inorganic Chemistry, 2004, 2004, 3585-3599.	1.0	45
89	Extending the Reaction Landscape of the {Pt(μ-S)2Pt} Core: From Metal Centers to Non-Metallic Electrophiles. ChemInform, 2004, 35, no.	0.1	0
90	Electrochemical and theoretical study of the redox properties of transition metal complexes with {Pt2S2} cores. Dalton Transactions, 2004, , 706-712.	1.6	10

#	Article	IF	CITATIONS
91	Unusual Câ^'H Allylic Activation in the {PtII(cod)} Fragment Bonded to a {Pt2(μ-S)2} Core. Organometallics, 2004, 23, 2522-2532.	1.1	16
92	The Evolution of[{Ph2P(CH2)nPPh2}Pt(μ-S)2Pt{Ph2P(CH2)nPPh2}] (n=2, 3) Metalloligands in Protic Acids: A Cascade of Sequential Reactions. Chemistry - A European Journal, 2003, 9, 5023-5035.	1.7	38
93	Diverse Evolution of [{Ph2P(CH2)nPPh2}Pt(μ-S)2Pt{Ph2P(CH2)nPPh2}] (n = 2, 3) Metalloligands in CH2Cl2. Inorganic Chemistry, 2002, 41, 3218-3229.	1.9	50
94	First Evidence of Fast SHâ‹â‹S Proton Transfer in a Transition Metal Complex. Angewandte Chemie - International Edition, 2002, 41, 2776-2778.	7.2	23