thierry Jouault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8133199/publications.pdf Version: 2024-02-01

THIEDDY COUNTIT

#	Article	IF	CITATIONS
1	Systematic gene overexpression in <i>Candida albicans</i> identifies a regulator of early adaptation to the mammalian gut. Cellular Microbiology, 2018, 20, e12890.	1.1	50
2	Citrulline and Monocyte-Derived Macrophage Reactivity before Conditioning Predict Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2017, 23, 913-921.	2.0	13
3	Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination. Gut Pathogens, 2017, 9, 9.	1.6	41
4	The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell w of <i>Candida albicans</i> modulating immune recognition. Virulence, 2016, 7, 558-577.	/all 1.8	26
5	Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Mucosal Immunology, 2016, 9, 767-776.	2.7	53
6	Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection. Biochimie, 2016, 120, 96-104.	1.3	3
7	Humoral Immunity Links Candida albicans Infection and Celiac Disease. PLoS ONE, 2015, 10, e0121776.	1.1	29
8	β-1,2-Mannosyltransferases 1 and 3 Participate in Yeast and Hyphae O- and N-Linked Mannosylation and Alter Candida albicans Fitness During Infection. Open Forum Infectious Diseases, 2015, 2, ofv116.	0.4	18
9	Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Seminars in Immunopathology, 2015, 37, 123-130.	2.8	14
10	An immunological link between <i>Candida albicans</i> colonization and Crohn's disease. Critical Reviews in Microbiology, 2015, 41, 135-139.	2.7	42
11	Modulation of the Host Response to Control Invasive Fungal Infections. , 2015, , 237-266.		1
12	The CARD8 p.C10X mutation associates with a low anti-glycans antibody response in patients with Crohn's disease. BMC Medical Genetics, 2013, 14, 35.	2.1	12
13	Single-molecule analysis of the major glycopolymers of pathogenic and non-pathogenic yeast cells. Nanoscale, 2013, 5, 4855.	2.8	19
14	Characterization of the recognition of Candida species by mannose-binding lectin using surface plasmon resonance. Analyst, The, 2013, 138, 2477.	1.7	4
15	Secukinumab failure in Crohn's disease: the yeast connection?. Gut, 2013, 62, 800.2-801.	6.1	77
16	Deficient Beta-Mannosylation of Candida albicans Phospholipomannan Affects the Proinflammatory Response in Macrophages. PLoS ONE, 2013, 8, e84771.	1.1	16
17	Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on Â-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology, 2012, 22, 1332-1342.	1.3	25
18	Mannose-Binding Lectin Levels and Variation During Invasive Candidiasis. Journal of Clinical Immunology, 2012, 32, 1317-1323.	2.0	15

THIERRY JOUAULT

#	Article	IF	CITATIONS
19	Variants of NOD1 and NOD2 genes display opposite associations with familial risk of crohn's disease and anti-saccharomyces cerevisiae antibody levels. Inflammatory Bowel Diseases, 2012, 18, 430-438.	0.9	20
20	Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology, 2011, 21, 796-805.	1.3	16
21	In vitropro- and anti-inflammatory responses to viableCandida albicansyeasts by a murine macrophage cell line. Medical Mycology, 2010, 48, 912-921.	0.3	7
22	Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease. Trends in Immunology, 2010, 31, 171-175.	2.9	34
23	Yeasts: Neglected Pathogens. Digestive Diseases, 2009, 27, 104-110.	0.8	44
24	Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by <i>Candida albicans</i> . Cellular Microbiology, 2009, 11, 1007-1015.	1.1	73
25	A Method for Examining Glycans Surface Expression of Yeasts by Flow Cytometry. Methods in Molecular Biology, 2009, 470, 85-94.	0.4	6
26	Candida albicans Colonization and ASCA in Familial Crohn's Disease. American Journal of Gastroenterology, 2009, 104, 1745-1753.	0.2	172
27	Colonization of Mice by <i>Candida albicans</i> Is Promoted by Chemically Induced Colitis and Augments Inflammatory Responses through Galectinâ€3. Journal of Infectious Diseases, 2008, 197, 972-980.	1.9	161
28	Galectin-3 Modulates Immune and Inflammatory Responses during Helminthic Infection: Impact of Galectin-3 Deficiency on the Functions of Dendritic Cells. Infection and Immunity, 2007, 75, 5148-5157.	1.0	98
29	Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clinical Microbiology and Infection, 2007, 13, 384-394.	2.8	44
30	Candida albicans Is an Immunogen for Anti–Saccharomyces cerevisiae Antibody Markers of Crohn's Disease. Gastroenterology, 2006, 130, 1764-1775.	0.6	185
31	Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry. Journal of Immunological Methods, 2006, 314, 90-102.	0.6	26
32	Specific Recognition of <i>Candida albicans</i> by Macrophages Requires Galectin-3 to Discriminate <i>Saccharomyces cerevisiae</i> and Needs Association with TLR2 for Signaling. Journal of Immunology, 2006, 177, 4679-4687.	0.4	214
33	Candida albicansserotype B strains synthesize a serotype-specific phospholipomannan overexpressing a β-1,2-linked mannotriose. Molecular Microbiology, 2005, 58, 984-998.	1.2	12
34	Anti-Saccharomyces cerevisiae antibodies in twins with inflammatory bowel disease. Gut, 2005, 54, 1237-1243.	6.1	46
35	Inactivation of CaMIT1 Inhibits Candida albicans Phospholipomannan β-Mannosylation, Reduces Virulence, and Alters Cell Wall Protein β-Mannosylation. Journal of Biological Chemistry, 2004, 279, 47952-47960.	1.6	61
36	Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Current Opinion in Microbiology, 2004, 7, 342-349.	2.3	130

THIERRY JOUAULT

#	Article	IF	CITATIONS
37	Increased Sensitivity of Mannanemia Detection Tests by Joint Detection of α- and β-Linked Oligomannosides during Experimental and Human Systemic Candidiasis. Journal of Clinical Microbiology, 2004, 42, 164-171.	1.8	62
38	Role of Phospholipomannan inCandida albicansEscape from Macrophages and Induction of Cell Apoptosis through Regulation of Bad Phosphorylation. Annals of the New York Academy of Sciences, 2003, 1010, 573-576.	1.8	18
39	Candida albicansPhospholipomannan Is Sensed through Tollâ€Like Receptors. Journal of Infectious Diseases, 2003, 188, 165-172.	1.9	281
40	β-1,2- and α-1,2-LinkedOligomannosides Mediate Adherence of Candida albicans Blastospores to Human Enterocytes InVitro. Infection and Immunity, 2003, 71, 7061-7068.	1.0	74
41	Candida albicans Phospholipomannan Promotes Survival of Phagocytosed Yeasts through Modulation of Bad Phosphorylation and Macrophage Apoptosis. Journal of Biological Chemistry, 2003, 278, 13086-13093.	1.6	70
42	Candida albicans Phospholipomannan, a New Member of the Fungal Mannose Inositol Phosphoceramide Family. Journal of Biological Chemistry, 2002, 277, 37260-37271.	1.6	80
43	Contribution of Phospholipomannan to the Surface Expression of \hat{l}^2 -1,2-Oligomannosides in Candida albicans and Its Presence in Cell Wall Extracts. Infection and Immunity, 2002, 70, 4323-4328.	1.0	36
44	Synthetic Analogues of β-1,2 Oligomannosides Prevent Intestinal Colonization by the Pathogenic Yeast Candida albicans. Antimicrobial Agents and Chemotherapy, 2002, 46, 3869-3876.	1.4	58
45	β-1,2-Mannosylation of Candida albicans Mannoproteins and Glycolipids Differs with Growth Temperature and Serotype. Infection and Immunity, 2002, 70, 5274-5278.	1.0	19
46	Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Molecular Microbiology, 2002, 44, 841-853.	1.2	76
47	Peptides that mimic Candida albicans-derived Â-1,2-linked mannosides. Glycobiology, 2001, 11, 693-701.	1.3	17
48	Candida albicans -Derived \hat{l}^2 -1,2-Linked Mannooligosaccharides Induce Desensitization of Macrophages. Infection and Immunity, 2000, 68, 965-968.	1.0	27
49	β-1,2-Linked Oligomannosides from Candida albicans Bind to a 32-Kilodalton Macrophage Membrane Protein Homologous to the Mammalian Lectin Galectin-3. Infection and Immunity, 2000, 68, 4391-4398.	1.0	141
50	The Candida albicans Phospholipomannan Is a Family of Glycolipids Presenting Phosphoinositolmannosides with Long Linear Chains of β-1,2-Linked Mannose Residues. Journal of Biological Chemistry, 1999, 274, 30520-30526.	1.6	44
51	XIV. Response toPneumocystisinfection in an immunocompetent host. FEMS Immunology and Medical Microbiology, 1998, 22, 107-121.	2.7	12
52	Early Signal Transduction Induced byCandida albicansin Macrophages through Shedding of a Glycolipid. Journal of Infectious Diseases, 1998, 178, 792-802.	1.9	52
53	Definitive chemical evidence for the constitutive ability ofCandida albicansserotype A strains to synthesize β-1,2 linked oligomannosides containing up to 14 mannose residues. FEBS Letters, 1997, 416, 203-206.	1.3	30
54	Detection of Cytokine mRNA in the Lung during the Spontaneous Pneumocystis carinii Pneumonia of the Young Rabbit. Journal of Eukaryotic Microbiology, 1997, 44, 45s-45s.	0.8	10

THIERRY JOUAULT

#	Article	IF	CITATIONS
55	β-1,2-linked oligomannosides Inhibit <i>Candida albicans</i> binding to murine macrophage. Journal of Leukocyte Biology, 1996, 60, 81-87.	1.5	75
56	Role of Alveolar Macrophages during the Spontaneous Pneumocystis carinii Pneumonia of Rabbit at Weaning. Journal of Eukaryotic Microbiology, 1996, 43, 23S-23S.	0.8	9
57	Evidence for different mannosylation processes involved in the association of Â-1,2-linked oligomannosidic epitopes in Candida albicans mannan and phospholipomannan. Microbiology (United) Tj ETQq1 1	. 0.7 8431	41ngBT/Ov∈
58	Mapping of Â-1,2-linked oligomannosidic epitopes among glycoconjugates of Candida species. Microbiology (United Kingdom), 1995, 141, 2693-2697.	0.7	22
59	Lectin—Carbohydrate Interactions and Infectivity of Human Immunodeficiency Virus Type 1 (HIV-1). AIDS Research and Human Retroviruses, 1992, 8, 27-37.	0.5	46
60	Infection of monocytic cells by HIV1: combined role of FcR and CD4. Research in Virology, 1991, 142, 183-188.	0.7	11
61	HIV infection of monocytic cells. Aids, 1989, 3, 125-134.	1.0	68
62	Quantitative and qualitative analysis of the Fc receptor for IgE (FcɛRII) on human eosinophils. European Journal of Immunology, 1988, 18, 237-241.	1.6	29
63	Detection of anti-CD4 autoantibodies in the sera of HIV-infected patients using recombinant soluble CD4 molecules. Aids, 1988, 2, 353-362.	1.0	61
64	Functional study of a monoclonal antibody to IgE Fc receptor (Fc epsilon R2) of eosinophils, platelets, and macrophages Journal of Experimental Medicine, 1986, 164, 72-89.	4.2	155