
Kajar Köster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8133056/publications.pdf Version: 2024-02-01

KAIAD KöSTED

#	Article	IF	CITATIONS
1	Response of soil bacterial community to biochar application in a boreal pine forest. Journal of Forestry Research, 2023, 34, 749-759.	1.7	6
2	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	1.9	9
3	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	4.7	40
4	Effect of biochar amendment on the properties of growing media and growth of containerized Norway spruce, Scots pine, and silver birch seedlings. Canadian Journal of Forest Research, 2021, 51, 31-40.	0.8	7
5	Fire and vegetation dynamics in northwest Siberia during the last 60Âyears based on high-resolution remote sensing. Biogeosciences, 2021, 18, 207-228.	1.3	16
6	North American boreal forests are a large carbon source due to wildfires from 1986 to 2016. Scientific Reports, 2021, 11, 7723.	1.6	19
7	Soil Fungal Community Structure in Boreal Pine Forests: From Southern to Subarctic Areas of Finland. Frontiers in Microbiology, 2021, 12, 653896.	1.5	16
8	Data sharing practices and data availability upon request differ across scientific disciplines. Scientific Data, 2021, 8, 192.	2.4	110
9	Impacts of wildfire on soil microbiome in Boreal environments. Current Opinion in Environmental Science and Health, 2021, 22, 100258.	2.1	23
10	Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires. Agricultural and Forest Meteorology, 2021, 308-309, 108584.	1.9	3
11	Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research, 2021, 14, 117862212110281.	1.2	53
12	Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0). Geoscientific Model Development, 2021, 14, 6605-6622.	1.3	3
13	Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest. Science of the Total Environment, 2020, 718, 135291.	3.9	22
14	Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Science of the Total Environment, 2020, 711, 134851.	3.9	18
15	Wildfire effects on soil bacterial community and its potential functions in a permafrost region of Canada. Applied Soil Ecology, 2020, 156, 103713.	2.1	23
16	Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests. International Journal of Wildland Fire, 2020, 29, 541.	1.0	4
17	Decadalâ€Scale Recovery of Carbon Stocks After Wildfires Throughout the Boreal Forests. Global Biogeochemical Cycles, 2020, 34, e2020GB006612.	1.9	19
18	How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environmental Research, 2020, 184, 109328.	3.7	45

Kajar Köster

#	Article	IF	CITATIONS
19	Biochar amendment increases tree growth in nutrient-poor, young Scots pine stands in Finland. Forest Ecology and Management, 2020, 474, 118362.	1.4	20
20	Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests. Annals of Forest Science, 2020, 77, 1.	0.8	8
21	The impact of wildfire on microbial C:N:P stoichiometry and the fungal-to-bacterial ratio in permafrost soil. Biogeochemistry, 2019, 142, 1-17.	1.7	37
22	Effects of Biochar on Fluxes and Turnover of Carbon in Boreal Forest Soils. Soil Science Society of America Journal, 2019, 83, 126-136.	1.2	13
23	Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry, 2019, 143, 257-274.	1.7	24
24	Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agricultural and Forest Meteorology, 2019, 271, 1-11.	1.9	26
25	Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. Journal of Environmental Management, 2019, 241, 637-644.	3.8	27
26	Impact of post-fire management on soil respiration, carbon and nitrogen content in a managed hemiboreal forest. Journal of Environmental Management, 2019, 233, 371-377.	3.8	18
27	Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant and Soil, 2018, 425, 71-85.	1.8	46
28	Contrasting effects of reindeer grazing on CO ₂ , CH ₄ , and N ₂ O fluxes originating from the northern boreal forest floor. Land Degradation and Development, 2018, 29, 374-381.	1.8	11
29	Imprints of management history on hemiboreal forest ecosystems in the Baltic States. Ecosphere, 2018, 9, e02503.	1.0	20
30	Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland. Applied Soil Ecology, 2018, 132, 74-82.	2.1	20
31	Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of Environmental Management, 2018, 228, 405-415.	3.8	44
32	Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Science of the Total Environment, 2017, 601-602, 895-905.	3.9	41
33	Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management. Ecosphere, 2017, 8, e01706.	1.0	74
34	Are the climatic factors combined with reindeer grazing affecting the soil CO2 emissions in subarctic boreal pine forest?. Catena, 2017, 149, 616-622.	2.2	7
35	Nitrogen balance along a northern boreal forest fire chronosequence. PLoS ONE, 2017, 12, e0174720.	1.1	15
36	How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence?. Forests, 2016, 7, 201.	0.9	17

Kajar Köster

#	Article	IF	CITATIONS
37	Bacterial community structure and function shift across a northern boreal forest fire chronosequence. Scientific Reports, 2016, 6, 32411.	1.6	37
38	The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. International Journal of Wildland Fire, 2016, 25, 213.	1.0	34
39	Corrigendum to: The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. International Journal of Wildland Fire, 2016, 25, 618.	1.0	7
40	Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant and Soil, 2016, 402, 303-316.	1.8	21
41	Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in Väiö, Finnish Lapland. Geoderma Regional, 2015, 5, 181-187.	0.9	20
42	Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Forest Ecology and Management, 2015, 354, 35-42.	1.4	47
43	Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence. Applied and Environmental Microbiology, 2015, 81, 7869-7880.	1.4	119
44	Impact of postfire management on forest regeneration in a managed hemiboreal forest, Estonia. Canadian Journal of Forest Research, 2015, 45, 1192-1197.	0.8	18
45	Influences of Reindeer Grazing on Above- and Belowground Biomass and Soil Carbon Dynamics. Arctic, Antarctic, and Alpine Research, 2015, 47, 495-503.	0.4	19
46	Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma, 2014, 235-236, 74-82.	2.3	55
47	Comparison of soil CO2 flux between uncleared and cleared windthrow areas in Estonia and Latvia. Forest Ecology and Management, 2011, 262, 65-70.	1.4	25
48	The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest. Journal of Forest Research, 2011, 16, 155-167.	0.7	27
49	Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. Journal of Forest Research, 2010, 15, 55-64.	0.7	36
50	Assessment of Tree Mortality After Windthrow using Photo-Derived Data. Annales Botanici Fennici, 2009, 46, 291-298.	0.0	15
51	Analysis of forest naturalness and tree mortality patterns in Estonia. Forest Ecology and Management, 2009, 258, S187-S195.	1.4	61
52	Regeneration development 4–5 years after a storm in Norway spruce dominated forests, Estonia. Forest Ecology and Management, 2007, 250, 17-24.	1.4	48
53	Variation and ecological characteristics of coarse woody debris in Lahemaa and Karula National Parks, Estonia. Scandinavian Journal of Forest Research, 2005, 20, 102-111.	0.5	19