Paul Forscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8133022/publications.pdf Version: 2024-02-01

DALLI FORSCHER

#	Article	IF	CITATIONS
1	Regulation of axon growth by myosin Il–dependent mechanocatalysis of cofilin activity. Journal of Cell Biology, 2019, 218, 2329-2349.	2.3	23
2	Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation. Molecular Biology of the Cell, 2017, 28, 98-110.	0.9	8
3	Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell, 2016, 165, 434-448.	13.5	57
4	Regeneration of Aplysia Bag Cell Neurons is Synergistically Enhanced by Substrate-Bound Hemolymph Proteins and Laminin. Scientific Reports, 2014, 4, 4617.	1.6	8
5	Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons. Scientific Reports, 2014, 4, 4961.	1.6	39
6	Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Molecular Biology of the Cell, 2013, 24, 3097-3114.	0.9	22
7	Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks. PLoS ONE, 2013, 8, e73389.	1.1	15
8	Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT–dependent neurite outgrowth in <i>Aplysia</i> bag cell neurons. Molecular Biology of the Cell, 2012, 23, 4833-4848.	0.9	31
9	Arp2/3 complex–dependent actin networks constrain myosin II function in driving retrograde actin flow. Journal of Cell Biology, 2012, 197, 939-956.	2.3	140
10	Membrane Tension, Myosin Force, and Actin Turnover Maintain Actin Treadmill in the Nerve Growth Cone. Biophysical Journal, 2012, 102, 1503-1513.	0.2	68
11	The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones. PLoS ONE, 2012, 7, e30959.	1.1	60
12	Rac1 Modulates Stimulus-evoked Ca ²⁺ Release in Neuronal Growth Cones via Parallel Effects on Microtubule/Endoplasmic Reticulum Dynamics and Reactive Oxygen Species Production. Molecular Biology of the Cell, 2009, 20, 3700-3712.	0.9	24
13	Multiplexed force measurements on live cells with holographic optical tweezers. Optics Express, 2009, 17, 6209.	1.7	56
14	Coordination of Actin Filament and Microtubule Dynamics during Neurite Outgrowth. Developmental Cell, 2008, 15, 146-162.	3.1	199
15	Myosin II Activity Facilitates Microtubule Bundling in the Neuronal Growth Cone Neck. Developmental Cell, 2008, 15, 163-169.	3.1	110
16	Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nature Cell Biology, 2007, 9, 1360-1369.	4.6	82
17	Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biology, 2006, 8, 216-226.	4.6	440
18	Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane. Current Biology, 2005, 15, 1695-1699.	1.8	183

PAUL FORSCHER

#	Article	IF	CITATIONS
19	Microtubule Dynamics Are Necessary for Src Family Kinase-Dependent Growth Cone Steering. Current Biology, 2004, 14, 1194-1199.	1.8	106
20	Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biology, 2003, 5, 599-609.	4.6	794
21	Rho-Dependent Contractile Responses in the Neuronal Growth Cone Are Independent of Classical Peripheral Retrograde Actin Flow. Neuron, 2003, 40, 931-944.	3.8	148
22	Protein Kinase C Isoforms Are Translocated to Microtubules in Neurons. Journal of Biological Chemistry, 2002, 277, 40633-40639.	1.6	26
23	Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. Journal of Cell Biology, 2002, 158, 139-152.	2.3	396
24	Protein Kinase C Activation Promotes Microtubule Advance in Neuronal Growth Cones by Increasing Average Microtubule Growth Lifetimes. Journal of Cell Biology, 2001, 152, 1033-1044.	2.3	93
25	Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. Journal of Cell Biology, 2001, 155, 427-438.	2.3	111
26	Localization of unconventional myosins V and VI in neuronal growth cones. Journal of Neurobiology, 2000, 42, 370-382.	3.7	54
27	Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. Journal of Neurobiology, 2000, 44, 97-113.	3.7	315
28	Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. Journal of Neurobiology, 2000, 44, 97.	3.7	5
29	A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature, 1999, 397, 698-701.	13.7	383
30	An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Current Opinion in Neurobiology, 1998, 8, 106-116.	2.0	154
31	The Ig Superfamily Cell Adhesion Molecule, apCAM, Mediates Growth Cone Steering by Substrate–Cytoskeletal Coupling. Journal of Cell Biology, 1998, 141, 227-240.	2.3	201
32	Binding of Protein Kinase C Isoforms to Actin in <i>Aplysia</i> . Journal of Neurochemistry, 1998, 71, 1221-1231.	2.1	38
33	Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron, 1995, 14, 763-771.	3.8	352
34	Cytoskeletal reorganization underlying growth cone motility. Current Opinion in Neurobiology, 1995, 5, 112.	2.0	0
35	Cytoskeletal reorganization underlying growth cone motility. Current Opinion in Neurobiology, 1994, 4, 640-647.	2.0	164
36	In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity. The Journal of Experimental Zoology, 1993, 267, 33-39.	1.4	21

#	Article	IF	CITATIONS
37	Novel form of growth cone motility involving site-directed actin filament assembly. Nature, 1992, 357, 515-518.	13.7	151
38	Calcium and polyphosphoinositide control of cytoskeletal dynamics. Trends in Neurosciences, 1989, 12, 468-474.	4.2	153