Hugues Garnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8132619/publications.pdf

Version: 2024-02-01

90 papers

1,765 citations

304743

22

h-index

302126 39 g-index

90 all docs 90 docs citations 90 times ranked 968 citing authors

#	Article	IF	Citations
1	Parameter and differentiation order estimation in fractional models. Automatica, 2013, 49, 926-935.	5.0	197
2	Refined instrumental variable methods for identification of LPV Box–Jenkins models. Automatica, 2010, 46, 959-967.	5.0	141
3	Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems. Environmental Modelling and Software, 2006, 21, 1055-1072.	4.5	99
4	An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engineering Practice, 2007, 15, 471-486.	5.5	84
5	Direct continuous-time approaches to system identification. Overview and benefits for practical applications. European Journal of Control, 2015, 24, 50-62.	2.6	81
6	Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods. Applied Energy, 2016, 179, 426-436.	10.1	77
7	The advantages of directly identifying continuous-time transfer function models in practical applications. International Journal of Control, 2014, 87, 1319-1338.	1.9	66
8	Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data. Journal of Process Control, 2015, 25, 19-27.	3.3	65
9	Optimal instrumental variable method for closed-loop identification. IET Control Theory and Applications, 2011, 5, 1147-1154.	2.1	58
10	Instrumental variable scheme for closed-loop LPV model identification. Automatica, 2012, 48, 2314-2320.	5.0	48
11	An optimal instrumental variable method for continuous-time fractional model identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 14379-14384.	0.4	38
12	Third-order cumulants based methods for continuous-time errors-in-variables model identification. Automatica, 2008, 44, 647-658.	5.0	37
13	Refined instrumental variable method for Hammerstein–Wiener continuousâ€time model identification. IET Control Theory and Applications, 2013, 7, 1276-1286.	2.1	35
14	Identification of continuous-time errors-in-variables models. Automatica, 2006, 42, 1477-1490.	5.0	34
15	Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models. , 2008, , 91-131.		33
16	Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance., 2008,, 1-29.		29
17	Direct identification of continuous-time linear parameter-varying input/output models. IET Control Theory and Applications, 2011, 5, 878-888.	2.1	29
18	Control-Oriented Modeling of Wireless Power Transfer Systems With Phase-Shift Control. IEEE Transactions on Power Electronics, 2020, 35, 2119-2134.	7.9	29

#	Article	IF	Citations
19	LATEST DEVELOPMENTS FOR THE MATLAB CONTSID TOOLBOX. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 714-719.	0.4	25
20	Issues in separable identification of continuous-time models with time-delay. Automatica, 2018, 94, 258-273.	5.0	24
21	Developments for the matlab contsid toolbox. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 969-974.	0.4	23
22	On instrumental variable-based methods for errors-in-variables model identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 426-431.	0.4	23
23	AN OPTIMAL INSTRUMENTAL VARIABLE APPROACH FOR IDENTIFYING HYBRID CONTINUOUS-TIME BOX-JENKINS MODELS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 225-230.	0.4	22
24	EM-based identification of continuous-time ARMA Models from irregularly sampled data. Automatica, 2017, 77, 293-301.	5.0	22
25	The CONTSID Toolbox: A Software Support for Data-based Continuous-time Modelling. Advances in Industrial Control, 2008, , 249-290.	0.5	20
26	CONTSID: a Matlab toolbox for standard and advanced identification of black-box continuous-time models. IFAC-PapersOnLine, 2018, 51, 688-693.	0.9	20
27	Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models., 2008,,.		19
28	Data-Driven Modeling of Wireless Power Transfer Systems With Multiple Transmitters. IEEE Transactions on Power Electronics, 2020, 35, 11363-11379.	7.9	19
29	A REFINED IV METHOD FOR CLOSED-LOOP SYSTEM IDENTIFICATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 903-908.	0.4	16
30	Robust time-domain output error method for identifying continuous-time systems with time delay. Systems and Control Letters, 2017, 102, 81-92.	2.3	16
31	System Identification, Environmental Modelling, and Control System Design. , 2012, , .		16
32	Instrumental Variable Methods for Closed-loop Continuous-time Model Identification. Advances in Industrial Control, 2008, , 133-160.	0.5	16
33	Subspace based methods for continuous-time model identification of MIMO systems from filtered sampled data., 2007,,.		15
34	Data-Driven Modeling of Wireless Power Transfer Systems With Slowly Time-Varying Parameters. IEEE Transactions on Power Electronics, 2020, 35, 12442-12456.	7.9	15
35	Instrumental variable methods for identifying partial differential equation models. International Journal of Control, 2013, 86, 2325-2335.	1.9	14
36	Recursive IV Identification of Continuous-Time Models With Time Delay From Sampled Data. IEEE Transactions on Control Systems Technology, 2020, 28, 1074-1082.	5.2	12

#	Article	IF	Citations
37	Simple Refined IV Methods of Closed-Loop System Identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 1151-1156.	0.4	11
38	Aerodynamic Coefficient Identification of a Space Vehicle from Multiple Free-Flight Tests. Journal of Spacecraft and Rockets, 2017, 54, 426-435.	1.9	11
39	Benchmark problems for continuous-time model identification: Design aspects, results and perspectives. Automatica, 2019, 107, 511-517.	5.0	11
40	Refined instrumental variable methods for identifying hammerstein models operating in closed loop. , 2009, , .		10
41	What does continuous-time model identification have to offer?. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 810-815.	0.4	10
42	A Frequency Localizing Basis Function-Based IV Method for Wideband System Identification. IEEE Transactions on Control Systems Technology, 2018, 26, 329-335.	5.2	10
43	Frequency domain identification of continuous-time output-error models with time-delay from relay feedback tests. Automatica, 2018, 98, 180-189.	5.0	10
44	Continuous-time model identification from noisy input/output measurements using fourth-order cumulants., 2007,,.		9
45	Identification of continuous-time models with slowly time-varying parameters. Control Engineering Practice, 2019, 93, 104165.	5.5	9
46	DIRECT IDENTIFICATION OF CONTINUOUS-TIME ERRORS-IN-VARIABLES MODELS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 797-802.	0.4	8
47	CONTINUOUS-TIME MODEL IDENTIFICATION OF ROBOT FLEXIBILITIES FOR FAST VISUAL SERVOING. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 1264-1269.	0.4	8
48	Refined Instrumental Variable methods for closed-loop system identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 284-289.	0.4	8
49	Developments for the CONTSID toolbox. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1553-1558.	0.4	8
50	Unifying some higher-order statistic-based methods for errors-in-variables model identification. Automatica, 2009, 45, 1937-1942.	5.0	7
51	Special issue on â€~Applications of Continuous-Time Model Identification and Estimation'. International Journal of Control, 2014, 87, 1317-1318.	1.9	7
52	ROBUSTNESS ISSUES IN CONTINUOUS-TIME SYSTEM IDENTIFICATION FROM SAMPLED DATA. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 237-242.	0.4	6
53	Statistical Analysis of a Third-Order Cumulants Based Algorithm for Discrete-Time Errors-in-Variables Identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 420-425.	0.4	6
54	On the closed loop identification of LPV models using instrumental variables. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7773-7778.	0.4	6

#	Article	IF	CITATIONS
55	Real-time identification of linear continuous-time systems with slowly time-varying parameters. , 2016, , .		6
56	Refined instrumental variable parameter estimation of continuousâ€time Boxâ€"Jenkins models from irregularly sampled data. IET Control Theory and Applications, 2017, 11, 291-300.	2.1	6
57	IDENTIFICATION AND ESTIMATION OF CONTINUOUS-TIME RAINFALL-FLOW MODELS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 1276-1281.	0.4	5
58	Instrumental variable methods for identifying partial differential equation models of distributed parameter systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 840-845.	0.4	5
59	A Refined Instrumental Variable Method for Hammerstein-Wiener Continuous-Time Model Identification. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1061-1066.	0.4	5
60	Frequency-domain instrumental variable based method for wide band system identification., 2013,,.		5
61	Identification of advection-diffusion equation from a limited number of spatial locations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 193-198.	0.4	5
62	Direct continuous-time model identification of high-powered light-emitting diodes from rapidly sampled thermal step response data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6430-6435.	0.4	5
63	Recursive online IV method for identification of continuous-time slowly time-varying models in closed loop. IFAC-PapersOnLine, 2017, 50, 4008-4013.	0.9	5
64	The identification of continuous-time linear and nonlinear models: a tutorial with environmental applications. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 597-607.	0.4	4
65	Continuous-time model identification of systems operating in closed-loop. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 405-410.	0.4	3
66	A METHOD FOR BIAS REDUCTION IN TIME DOMAIN LEAST SQUARES PARAMETER ESTIMATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 590-595.	0.4	3
67	Teaching Data-based Continuous-time Model Identification with the CONTSID Toolbox for Matlab. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 6373-6378.	0.4	3
68	Closed-loop identification of continuous-time systems from non-uniformly sampled data., 2014,,.		3
69	A Model-Based Pharmacokinetics Characterization Method of Engineered Nanoparticles for Pilot Studies. IEEE Transactions on Nanobioscience, 2015, 14, 368-377.	3.3	3
70	A pragmatic and systematic statistical analysis for identification of industrial robots., 2017,,.		3
71	Identification of continuous-time Box-Jenkins models with arbitrary time-delay. , 2007, , .		2
72	Two-stage refined instrumental variable method for identifying Hammerstein-Wiener continuous-time models in closed loop. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 25-30.	0.4	2

#	Article	IF	CITATIONS
73	A Kalman Pre-filtered IV-Based Approach to Continuous-Time Hammerstein-Wiener System Identification*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 828-833.	0.4	2
74	Identification of LPV partial differential equation models. , 2013, , .		2
7 5	Parameter and time-delay identification of continuous-time models from non-uniformly sampled data. , 2014, , .		2
76	Predicting collisions: time-to-contact forecasting based on probabilistic segmentation and system identification. Advanced Robotics, 2018, 32, 426-442.	1.8	2
77	In-Orbit Data Driven Identification of Satellite Inertia Matrix. IFAC-PapersOnLine, 2018, 51, 467-472.	0.9	2
78	Projet Voltaireou comment remettre à niveau les étudiants en orthographe. Retour d'expérience du département R&T de l'IUT Nancy-Brabois. J3eA, 2010, 9, 0021.	0.0	2
79	Parameter estimation of a gyroless micro-satellite from telemetry data. Control Engineering Practice, 2022, 123, 105134.	5 . 5	2
80	GENERALIZATION OF A CORRELATION METHOD FOR TIME-DELAY ESTIMATION WITH APPLICATION TO A RIVER REACH. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 891-896.	0.4	1
81	System identification of the intrabrain tumoral uptake of multifunctional nanoparticles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 154-159.	0.4	1
82	Refined IV-based method for LPV partial differential equation model identification., 2014,,.		1
83	Grey-box identification of the pitch damping coefficient from free flight tests. , 2014, , .		1
84	Comparison between the IDIM-IV method and the DIDIM method for industrial robots identification. , 2017, , .		1
85	Refined Instrumental Variable Methods for Hammerstein Box-Jenkins Models., 2012,, 27-47.		1
86	Authors' reply to "Comments on †Continuous-time model identification from sampled data: implementation issues and performance evaluation' by E. Boje― International Journal of Control, 2005, 78, 1153-1154.	1.9	0
87	Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods. , $2016, , .$		0
88	Developments towards formalizing a benchmark for continuous-time model identification. , 2016, , .		0
89	Identification and control of nonlinear electro-mechanical systems. International Journal of Control, 2017, 90, 641-642.	1.9	0
90	A new data-based modelling method for identifying parsimonious nonlinear rainfall/i¬,ow models. Journal Europeen Des Systemes Automatises, 2012, 46, 633-647.	0.4	0