Joanna Mika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8132137/publications.pdf Version: 2024-02-01

ΙΟΛΝΝΛ ΜΙΚΛ

#	Article	IF	CITATIONS
1	Mirogabalin Decreases Pain-like Behaviours and Improves Opioid and Ketamine Antinociception in a Mouse Model of Neuropathic Pain. Pharmaceuticals, 2022, 15, 88.	1.7	3
2	Peripheral Mechanisms of Neuropathic Pain—The Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals, 2021, 14, 77.	1.7	26
3	Mirogabalin—A Novel Selective Ligand for the α2δ Calcium Channel Subunit. Pharmaceuticals, 2021, 14, 112.	1.7	20
4	Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain—Narrative Review. Pharmaceutics, 2021, 13, 450.	2.0	27
5	Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Scientific Reports, 2021, 11, 9616.	1.6	12
6	Nitric oxide modulates tapentadol antinociceptive tolerance and physical dependence. European Journal of Pharmacology, 2021, 907, 174245.	1.7	5
7	Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain, 2021, 162, 432-445.	2.0	9
8	Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury—Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. International Journal of Molecular Sciences, 2021, 22, 45.	1.8	8
9	The Kynurenine Pathway as a Potential Target for Neuropathic Pain Therapy Design: From Basic Research to Clinical Perspectives. International Journal of Molecular Sciences, 2021, 22, 11055.	1.8	22
10	Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model—In Vivo and In Vitro Study. International Journal of Molecular Sciences, 2021, 22, 11074.	1.8	13
11	Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Frontiers in Immunology, 2021, 12, 781310.	2.2	15
12	The blockade of CC chemokine receptor type 1 influences the level of nociceptive factors and enhances opioid analgesic potency in a rat model of neuropathic pain. Immunology, 2020, 159, 413-428.	2.0	28
13	CCR4 Antagonist (CO21) Administration Diminishes Hypersensitivity and Enhances the Analgesic Potency of Morphine and Buprenorphine in a Mouse Model of Neuropathic Pain. Frontiers in Immunology, 2020, 11, 1241.	2.2	16
14	Metamizole relieves pain by influencing cytokine levels in dorsal root ganglia in a rat model of neuropathic pain. Pharmacological Reports, 2020, 72, 1310-1322.	1.5	8
15	Traumatic brain injury in mice induces changes in the expression of the XCL1/XCR1 and XCL1/ITGA9 axes. Pharmacological Reports, 2020, 72, 1579-1592.	1.5	7
16	Novel hybrid compounds, opioid agonist+melanocortin 4 receptor antagonist, as efficient analgesics in mouse chronic constriction injury model of neuropathic pain. Neuropharmacology, 2020, 178, 108232.	2.0	14
17	Changes in macrophage inflammatory protein-1 (MIP-1) family members expression induced by traumatic brain injury in mice. Immunobiology, 2020, 225, 151911.	0.8	22
18	Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Frontiers in Immunology, 2020, 11, 615327.	2.2	17

#	Article	IF	CITATIONS
19	The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Molecular and Cellular Probes, 2020, 54, 101671.	0.9	26
20	CCR4 antagonist (C021) influences the level of nociceptive factors and enhances the analgesic potency of morphine in a rat model of neuropathic pain. European Journal of Pharmacology, 2020, 880, 173166.	1.7	16
21	Comparison of the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic pain-related symptoms in rodents: behavioral and biochemical analyses. International Immunopharmacology, 2020, 84, 106540.	1.7	16
22	Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia – Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience, 2020, 441, 77-92.	1.1	10
23	Neuropathic Pain Dysregulates Gene Expression of the Forebrain Opioid and Dopamine Systems. Neurotoxicity Research, 2020, 37, 800-814.	1.3	29
24	Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury. Frontiers in Immunology, 2019, 10, 2198.	2.2	27
25	Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine, 2019, 119, 202-213.	1.4	46
26	Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. International Journal of Molecular Sciences, 2019, 20, 1451.	1.8	414
27	Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. European Journal of Medicinal Chemistry, 2019, 170, 261-275.	2.6	22
28	Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacological Reports, 2019, 71, 139-148.	1.5	20
29	Apelin as a nociceptive processes regulator. Ból, 2019, 19, 1-9.	0.1	0
30	Antinociceptive effects of novel histamine H ₃ and H ₄ receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. British Journal of Pharmacology, 2018, 175, 2897-2910.	2.7	36
31	Lipopolysaccharide from <i>Rhodobacter sphaeroides</i> (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. Pharmaceutical Biology, 2018, 56, 275-286.	1.3	18
32	Tapentadol – A representative of a new class of MOR-NRI analgesics. Pharmacological Reports, 2018, 70, 812-820.	1.5	12
33	The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacological Reports, 2018, 70, 821-830.	1.5	42
34	Dataset of (±)-NBI-74330 (CXCR3 antagonist) influence on chemokines under neuropathic pain. Data in Brief, 2018, 21, 1145-1150.	0.5	2
35	Involvement of microglial cells in the antinociceptive effects of metamizol in a mouse model of neuropathic pain. Pharmacology Biochemistry and Behavior, 2018, 175, 77-88.	1.3	11
36	Perioperative Immunosuppression and Risk of Cancer Progression: The Impact of Opioids on Pain Management. Pain Research and Management, 2018, 2018, 1-8.	0.7	20

#	Article	IF	CITATIONS
37	Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. European Journal of Pharmacology, 2018, 839, 21-32.	1.7	12
38	Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience, 2018, 390, 293-302.	1.1	12
39	Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness - Evidence from in vivo and in vitro studies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3418-3437.	1.8	37
40	Pharmacological Inhibition of Indoleamine 2,3-Dioxygenase-2 and Kynurenine 3-Monooxygenase, Enzymes of the Kynurenine Pathway, Significantly Diminishes Neuropathic Pain in a Rat Model. Frontiers in Pharmacology, 2018, 9, 724.	1.6	41
41	Involvement of Macrophage Inflammatory Protein-1 Family Members in the Development of Diabetic Neuropathy and Their Contribution to Effectiveness of Morphine. Frontiers in Immunology, 2018, 9, 494.	2.2	48
42	Targeting the NLRP3 Inflammasome-Related Pathways via Tianeptine Treatment-Suppressed Microglia Polarization to the M1 Phenotype in Lipopolysaccharide-Stimulated Cultures. International Journal of Molecular Sciences, 2018, 19, 1965.	1.8	84
43	Botulinum Toxin Type A—A Modulator of Spinal Neuron–Glia Interactions under Neuropathic Pain Conditions. Toxins, 2018, 10, 145.	1.5	35
44	Non-invasive transcutaneous Supraorbital Neurostimulation (tSNS) using Cefaly ® device in prevention of primary headaches. Neurologia I Neurochirurgia Polska, 2017, 51, 127-134.	0.6	19
45	Transcranial direct current stimulation (tDCS) and its influence on analgesics effectiveness in patients suffering from migraine headache. Pharmacological Reports, 2017, 69, 714-721.	1.5	35
46	The RS504393 Influences the Level of Nociceptive Factors and Enhances Opioid Analgesic Potency in Neuropathic Rats. Journal of NeuroImmune Pharmacology, 2017, 12, 402-419.	2.1	52
47	Bifunctional opioid/nociceptin hybrid KGNOP1 effectively attenuates pain-related behaviour in a rat model of neuropathy. European Journal of Pharmaceutical Sciences, 2017, 104, 221-229.	1.9	11
48	Spinal CCL1/CCR8 signaling interplay as a potential therapeutic target – Evidence from a mouse diabetic neuropathy model. International Immunopharmacology, 2017, 52, 261-271.	1.7	31
49	Analgesic Properties of Opioid/NK1 Multitarget Ligands with Distinct in Vitro Profiles in Naive and Chronic Constriction Injury Mice. ACS Chemical Neuroscience, 2017, 8, 2315-2324.	1.7	30
50	Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Frontiers in Pharmacology, 2017, 8, 48.	1.6	69
51	Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Frontiers in Cellular and Infection Microbiology, 2017, 7, 141.	1.8	44
52	Biphalin, a Dimeric Enkephalin, Alleviates LPS-Induced Activation in Rat Primary Microglial Cultures in Opioid Receptor-Dependent and Receptor-Independent Manners. Neural Plasticity, 2017, 2017, 1-19.	1.0	24
53	Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model. Neural Plasticity, 2016, 2016, 1-12.	1.0	77
54	Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Current Medicinal Chemistry, 2016, 23, 2908-2928.	1.2	143

#	Article	IF	CITATIONS
55	Dataset of botulinum toxin A influence on interleukins under neuropathy. Data in Brief, 2016, 9, 1020-1023.	0.5	2
56	Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology, 2016, 125, 573-589.	1.3	37
57	Bifunctional Peptide-Based Opioid Agonist–Nociceptin Antagonist Ligands for Dual Treatment of Acute and Neuropathic Pain. Journal of Medicinal Chemistry, 2016, 59, 3777-3792.	2.9	36
58	Maraviroc reduces neuropathic pain through polarization of microglia and astroglia – Evidence from inÂvivo and inÂvitro studies. Neuropharmacology, 2016, 108, 207-219.	2.0	91
59	Intravenous lidocaine infusions in a multidirectional model of treatment of neuropathic pain patients. Pharmacological Reports, 2016, 68, 1069-1075.	1.5	17
60	Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. European Journal of Pharmacology, 2016, 791, 377-388.	1.7	57
61	Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain — In vivo and in vitro evidence. Journal of Neuroimmunology, 2016, 297, 9-19.	1.1	54
62	Characteristics, diagnosis and therapeutic strategies for IgG4-related orbital disease. Pharmacological Reports, 2016, 68, 507-513.	1.5	3
63	Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine. Molecular and Cellular Neurosciences, 2016, 71, 114-124.	1.0	65
64	Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model. Neuropharmacology, 2016, 102, 80-91.	2.0	49
65	Treatment with a carbon monoxide-releasing molecule (CORM-2) inhibits neuropathic pain and enhances opioid effectiveness in rats. Pharmacological Reports, 2016, 68, 206-213.	1.5	25
66	Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 68-78.	2.5	60
67	Rola cytokin z rodziny interleukiny-1 w transmisji nocyceptywnej. Ból, 2016, 15, 39-47.	0.1	2
68	Zatokowy ból twarzoczaszki – trudnoÅ›ci diagnostyczne w róŹ⁄4nicowaniu. Ból, 2016, 15, 48-51.	0.1	0
69	Spontaneous cerebrospinal fluid leak at the clivus. Wideochirurgia I Inne Techniki Maloinwazyjne, 2015, 4, 593-599.	0.3	3
70	A new potential mechanism of action of tianeptine – the effect on microglial cell activation. SpringerPlus, 2015, 4, .	1.2	1
71	Anandamide, Acting via <i>CB2</i> Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. Neural Plasticity, 2015, 2015, 1-10.	1.0	83
72	Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy. Neural Plasticity, 2015, 2015, 1-15.	1.0	80

#	Article	IF	CITATIONS
73	The Role of Some Chemokines from the CXC Subfamily in a Mouse Model of Diabetic Neuropathy. Journal of Diabetes Research, 2015, 2015, 1-13.	1.0	32
74	Original article IgG4-related inflammatory orbital pseudotumors – a retrospective case series. Folia Neuropathologica, 2015, 2, 111-120.	0.5	7
75	IL-1 receptor antagonist improves morphine and buprenorphine efficacy in a rat neuropathic pain model. European Journal of Pharmacology, 2015, 764, 240-248.	1.7	47
76	Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – Neurokinin-1 antagonist peptidomimetics. European Journal of Medicinal Chemistry, 2015, 92, 64-77.	2.6	27
77	Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Frontiers in Cellular Neuroscience, 2015, 9, 82.	1.8	108
78	Effects of chronic doxepin and amitriptyline administration in naÃ ⁻ ve mice and in neuropathic pain mice model. Neuroscience, 2015, 294, 38-50.	1.1	23
79	Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics. ACS Medicinal Chemistry Letters, 2015, 6, 1209-1214.	1.3	20
80	The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. European Journal of Pharmacology, 2015, 749, 115-123.	1.7	29
81	Immunoglobulin G4-Related Disease (IgG4-RD) in the Orbit: Mucosa-Associated Lymphoid Tissue (MALT)-Type Lymphomas. Medical Science Monitor, 2015, 21, 1043-1050.	0.5	11
82	PD98059 Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy. PLoS ONE, 2015, 10, e0138583.	1.1	44
83	Castleman's disease of the neck - case report. , 2015, 4, 40-43.		0
84	Marawirok jako potencjalny lek stosowany w terapii bólu neuropatycznego – dowody z badań podstawowych. Ból, 2015, 16, 31-36.	0.1	0
85	Involvement of pro- and antinociceptive factors in minocycline analgesia in rat neuropathic pain model. Journal of Neuroimmunology, 2014, 277, 57-66.	1.1	81
86	Minocycline Enhances the Effectiveness of Nociceptin/Orphanin FQ during Neuropathic Pain. BioMed Research International, 2014, 2014, 1-12.	0.9	28
87	Minocycline prevents dynorphin-induced neurotoxicity during neuropathic pain in rats. Neuropharmacology, 2014, 86, 301-310.	2.0	46
88	Analgesic effects of antidepressants alone and after their local co-administration with morphine in a rat model of neuropathic pain. Pharmacological Reports, 2014, 66, 459-465.	1.5	6
89	Expression Profiling of Genes Modulated by Minocycline in a Rat Model of Neuropathic Pain. Molecular Pain, 2014, 10, 1744-8069-10-47.	1.0	40
90	Inhibition of intracellular signaling pathways NF-κB and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacological Reports, 2014, 66, 845-851.	1.5	56

#	Article	IF	CITATIONS
91	Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain. PLoS ONE, 2014, 9, e104420.	1.1	74
92	Rola chemokin w bólu neuropatycznym. Ból, 2014, 15, 19-35.	0.1	4
93	Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. Journal of Neuroimmunology, 2013, 262, 35-45.	1.1	54
94	Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology, 2013, 75, 445-457.	2.0	82
95	Mechanisms and pharmacology of diabetic neuropathy – experimental and clinical studies. Pharmacological Reports, 2013, 65, 1601-1610.	1.5	79
96	Neuronal and immunological basis of action of antidepressants in chronic pain – clinical and experimental studies. Pharmacological Reports, 2013, 65, 1611-1621.	1.5	91
97	Importance of glial activation in neuropathic pain. European Journal of Pharmacology, 2013, 716, 106-119.	1.7	362
98	The glutamatergic system as a target for neuropathic pain relief. Experimental Physiology, 2013, 98, 372-384.	0.9	100
99	Preclinical Cancer Pain Models. , 2013, , 71-93.		Ο
100	The role of nociceptin and dynorphin in chronic pain: Implications of neuro–glial interaction. Neuropeptides, 2011, 45, 247-261.	0.9	73
101	Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain. Pain, 2009, 147, 175-186.	2.0	35
102	Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. European Journal of Pharmacology, 2009, 623, 65-72.	1.7	160
103	Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain, Behavior, and Immunity, 2009, 23, 75-84.	2.0	160
104	Interleukin-1alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model. Pain, 2008, 138, 587-597.	2.0	88
105	Glutamate receptor ligands attenuate allodynia and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain. Pain, 2008, 139, 117-126.	2.0	110
106	Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacological Reports, 2008, 60, 297-307.	1.5	147
107	Antinociceptive effect of antisense oligonucleotides against the vanilloid receptor VR1/TRPV1. Neurochemistry International, 2007, 50, 281-290.	1.9	81
108	Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. European Journal of Pharmacology, 2007, 560, 142-149.	1.7	211

#	Article	IF	CITATIONS
109	Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochemical and Biophysical Research Communications, 2006, 350, 238-243.	1.0	147
110	Effects of ORL1 Receptor Agonists and Antagonists in Nociception. Journal of Neuropathic Pain & Symptom Palliation, 2006, 2, 29-44.	0.1	0
111	Analysis of the Dorsal Spinal Cord Synaptic Architecture by Combined Proteome Analysis and in Situ Hybridization. Journal of Proteome Research, 2005, 4, 238-249.	1.8	8
112	Morphine and endomorphin-1 differently influence pronociceptin/orphanin FQ system in neuropathic rats. Pharmacology Biochemistry and Behavior, 2004, 78, 171-178.	1.3	28
113	The Effects of Local Pentoxifylline and Propentofylline Treatment on Formalin-Induced Pain and Tumor Necrosis Factor-?? Messenger RNA Levels in the Inflamed Tissue of the Rat Paw. Anesthesia and Analgesia, 2004, 98, 1566-1573.	1.1	52
114	Relationship of pronociceptin/orphanin FQ and the nociceptin receptor ORL1 with substance P and calcitonin gene-related peptide expression in dorsal root ganglion of the rat. Neuroscience Letters, 2003, 348, 190-194.	1.0	26
115	The role of δ-opioid receptor subtypes in neuropathic pain. European Journal of Pharmacology, 2001, 415, 31-37.	1.7	82
116	Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. European Journal of Pharmacology, 1999, 367, 189-196.	1.7	123
117	Evidence for Fos involvement in the regulation of proenkephalin and prodynorphin gene expression in the rat hippocampus. Molecular Brain Research, 1998, 54, 243-251.	2.5	13
118	Chronic morphine increases biosynthesis of nitric oxide synthase in the rat spinal cord. NeuroReport, 1997, 8, 2743-2747.	0.6	56
119	Season-specific thymic architecture in the frog, Rana temporaria: Sem studies. Developmental and Comparative Immunology, 1996, 20, 129-137.	1.0	11
120	Plasticity of thymuses of ectothermic vertebrates. Trends in Immunology, 1996, 17, 442.	7.5	1
121	Age-dependent changes in thymuses in the European common frog,Rana temporaria. The Journal of Experimental Zoology, 1995, 273, 451-460.	1.4	16
122	Hybrid peptidomimetics for the use in neuropathicpain. , 0, , .		2