List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813206/publications.pdf Version: 2024-02-01

Υονς Ζηλης

#	Article	IF	CITATIONS
1	Improving thermal oxidative aging resistance and antiâ€reversion property of natural rubber by adding a crosslinking agent. Journal of Applied Polymer Science, 2022, 139, .	1.3	9
2	Corn Stalk-Based Carbon Microsphere/Reduced Graphene Oxide Composite Hydrogels for High-Performance Symmetric Supercapacitors. Energy & Fuels, 2022, 36, 2268-2276.	2.5	14
3	Vertically aligned carbon nanotubes/graphene/cellulose nanofiber networks for enhancing electrical conductivity and piezoresistivity of silicone rubber composites. Composites Science and Technology, 2022, 222, 109366.	3.8	11
4	Effects of boron nitride and carbon nanotube on damping properties, thermal conductivity and compression stress relaxation behavior of <scp>BIIR</scp> . Polymer Composites, 2022, 43, 1128-1135.	2.3	10
5	Enhancements in damping properties and thermal conductivity of acrylonitrileâ€butadiene rubber by using hindered phenol modified alumina. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
6	Preparation of high-performance natural rubber/carbon black/molybdenum disulfide composite by using the premixture of epoxidized natural rubber and cysteine-modified molybdenum disulfide. Polymer Bulletin, 2021, 78, 1213-1230.	1.7	14
7	Effect of electron beam irradiation on the thermal and mechanical properties of ethylene-vinyl acetate copolymer/polyamide blends. Polymers and Polymer Composites, 2021, 29, 714-723.	1.0	1
8	Preparation and characterization of modified castor oil via photo lick chemistry for UV urable waterborne polyurethane with enhanced water resistance and low conductive percolation threshold. Journal of Applied Polymer Science, 2021, 138, 49913.	1.3	4
9	A green approach to preparing hydrophobic, electrically conductive textiles based on waterborne polyurethane for electromagnetic interference shielding with low reflectivity. Chemical Engineering Journal, 2021, 421, 127749.	6.6	59
10	A self-healable, stretchable, tear-resistant and sticky elastomer enabled by a facile polymer blends strategy. Journal of Materials Chemistry A, 2021, 9, 3931-3939.	5.2	15
11	Effects of crosslinking reaction and extension strain on the electrical properties of silicone rubber/carbon nanofiller composites. Journal of Applied Polymer Science, 2021, 138, 50727.	1.3	5
12	Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators A: Physical, 2021, 323, 112659.	2.0	30
13	Graphene-Based Films: Fabrication, Interfacial Modification, and Applications. Nanomaterials, 2021, 11, 2539.	1.9	11
14	Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework. Polymer Bulletin, 2020, 77, 2139-2153.	1.7	30
15	Enhancement of thermal conductivity and mechanical properties of silicone rubber composites by using acrylate grafted siloxane copolymers. Chemical Engineering Journal, 2020, 391, 123476.	6.6	42
16	Graphene quantum dots interfacial-decorated hierarchical Ni/PS core/shell nanocapsules for tunable microwave absorption. Journal of Alloys and Compounds, 2020, 848, 156529.	2.8	12
17	Performance improvement of alumina/silicone rubber composites by adding 3â€(trimethoxysilyl)propyl methacrylate grafted siloxane copolymer. Polymer Composites, 2020, 41, 4842-4848.	2.3	10
18	Preparation of high-performance styrene-butadiene rubber composites by the addition of a hydroxyapatite-tannic acid reduced graphene oxide hybrid. Composites Science and Technology, 2020, 200, 108406.	3.8	11

#	Article	IF	CITATIONS
19	A bi-directional thermal-driven actuator with conductionâ€toâ€insulation transformation behavior and its applications in overheating protection and early warning of fire. Sensors and Actuators A: Physical, 2020, 312, 112084.	2.0	4
20	Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124994.	2.3	41
21	Vertically aligned silicon carbide nanowires/reduced graphene oxide networks for enhancing the thermal conductivity of silicone rubber composites. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105873.	3.8	87
22	Effects of electron beam irradiation and multi-functional monomer/co-agents on the mechanical and thermal properties of ethylene-vinyl acetate copolymer/polyamide blends. Materials Today Communications, 2020, 23, 100840.	0.9	8
23	Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Composites Part B: Engineering, 2020, 191, 107979.	5.9	86
24	A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3D interconnected graphene at an ultralow filler loading. Nanoscale, 2019, 11, 15234-15244.	2.8	44
25	Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites. International Journal of Heat and Mass Transfer, 2019, 141, 1049-1055.	2.5	15
26	Enhanced thermal oxidative stability of silicone rubber by using cerium-ferric complex oxide as thermal oxidative stabilizer. E-Polymers, 2019, 19, 257-267.	1.3	5
27	Peroxide crosslinked butyl rubber composites using TEMPO and sorbates. Composites Science and Technology, 2019, 183, 107805.	3.8	7
28	Magnetic aligned Fe3O4-reduced graphene oxide/waterborne polyurethane composites with controllable structure for high microwave absorption capacity. Carbon, 2019, 152, 661-670.	5.4	65
29	Conducting and stretchable composites using sandwiched graphene-carbon nanotube hybrids and styrene-butadiene rubber. Carbon, 2019, 149, 181-189.	5.4	31
30	From two-dimensional to three-dimensional structures: A superior thermal-driven actuator with switchable deformation behavior. Chemical Engineering Journal, 2019, 360, 680-685.	6.6	12
31	Effect of Electron Beam Irradiation on Thermal and Mechanical Properties of Polyamide Copolymer/Multiwall Carbon Nanotube Composites. Journal of Shanghai Jiaotong University (Science), 2019, 24, 12-18.	0.5	2
32	Effect of Electron Beam Irradiation on the Mechanical and Thermal Properties of Ternary Polyamide Copolymer. Macromolecular Research, 2018, 26, 359-364.	1.0	10
33	Interfacial Interaction Analysis of Blends of Poly(vinylidene fluoride) and Poly(ethylene–butylacrylate–glycidyl methacrylate) Compatibilized by Poly(butylene succinate): Morphologies, Rheological Behavior, and Mechanical Properties. Polymer-Plastics Technology and Engineering, 2018, 57, 206-217.	1.9	0
34	Effects of liquid polyisoprene and magnesium oxide on the mechanical properties of styreneâ€butadiene rubber/carbon nanotubes composite. Polymer Composites, 2018, 39, E765.	2.3	5
35	High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Composites Part A: Applied Science and Manufacturing, 2018, 105, 1-8.	3.8	67
36	Crosslink network evolution of BIIR/EPDM blends during peroxide vulcanization. Polymer Testing, 2017, 59, 253-261.	2.3	26

#	Article	IF	CITATIONS
37	Effect of octadecylamine modified graphene on thermal stability, mechanical properties and gas barrier properties of brominated butyl rubber. Macromolecular Research, 2017, 25, 270-275.	1.0	21
38	Rheological behavior of ethylene–vinyl acetate copolymer and fabrication of micropyramid arrays by rollâ€ŧoâ€ŧoll hot embossing on its thin films. Journal of Applied Polymer Science, 2017, 134, 45228.	1.3	3
39	Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber. Carbon, 2017, 123, 158-167.	5.4	85
40	Improving thermal conductivity of styrene-butadiene rubber composites by incorporating mesoporous silica@solvothermal reduced graphene oxide hybrid nanosheets with low graphene content. Composites Science and Technology, 2017, 150, 174-180.	3.8	36
41	Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Composites Part A: Applied Science and Manufacturing, 2017, 102, 236-242.	3.8	44
42	Study on calcium fluoride modified graphene/brominated butyl rubber nanocomposites. Polymer Bulletin, 2017, 74, 4959-4972.	1.7	3
43	Regulation of transâ€1,4â€polyisoprene crystallinity and mechanical properties of styreneâ€butadiene rubber/transâ€1,4â€polyisoprene vulcanizate. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
44	Understanding of intermolecular interaction in PVDF/PTW blends: Crystallization behavior, thermal, and dynamic mechanical properties. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
45	Graft copolymerization of methyl methacrylate from brominated poly(isobutyleneâ€ <i>co</i> â€isoprene) via atom transfer radical polymerization. Journal of Applied Polymer Science, 2016, 133, .	1.3	0
46	Preparation and properties of octadecylamine modified graphene oxide/styreneâ€butadiene rubber composites through an improved melt compounding method. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
47	Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf 50 342
48	Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances. European Polymer Journal, 2016, 84, 1-12.	2.6	26
49	Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant. ACS Applied Materials & Interfaces, 2016, 8, 31264-31272.	4.0	72
50	Influence of 1,2â€polybutadiene on properties of dicumyl peroxide cured brominated butyl rubber. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
51	Improving the filler dispersion of polychloroprene/carboxylated multi-walled carbon nanotubes composites by non-covalent functionalization of carboxylated ionic liquid. Composites Science and Technology, 2016, 123, 171-178.	3.8	45
52	Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydrate Polymers, 2016, 140, 374-382.	5.1	111
53	Compatibility and nonlinear viscoelasticity of polychloroprene/polyvinyl chloride blends with nitrile butadiene rubber as a compatibilizer. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
54	Graphene oxide as a covalent-crosslinking agent for EVM-g-PA6 thermoplastic elastomeric nanocomposites. RSC Advances, 2015, 5, 39042-39051.	1.7	9

#	Article	IF	CITATIONS
55	Characterization of polypropylene/hydrogenated styrene-isoprene-styrene block copolymer blends and fabrication of micro-pyramids via micro hot embossing of blend thin-films. RSC Advances, 2015, 5, 92212-92221.	1.7	8
56	Bio-based poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates by dynamic crosslinking: structure vs. property. RSC Advances, 2015, 5, 15962-15968.	1.7	46
57	Synergistic effects of rare earth oxides on intumescent flame retardancy of Nylon 1010/ethylene-vinyl-acetate rubber thermoplastic elastomers. Journal of Polymer Research, 2015, 22, 1.	1.2	11
58	Poly(butylene succinate -co- butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydrate Polymers, 2015, 134, 52-59.	5.1	33
59	The grafting reaction of epoxidized natural rubber with carboxyl ionic liquids and the ionic conductivity of solid electrolyte composites. RSC Advances, 2015, 5, 90031-90040.	1.7	14
60	Biobased Poly(lactide)/ethylene- <i>co</i> -vinyl Acetate Thermoplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability. ACS Sustainable Chemistry and Engineering, 2015, 3, 2211-2219.	3.2	68
61	Structure and properties of nylon 1010/ethylene-vinyl acetate rubber-based dynamically vulcanized thermoplastic elastomers filled with SiO ₂ . Polymer Engineering and Science, 2015, 55, 581-588.	1.5	6
62	Nonlinear viscoelasticity and stressâ€softening behavior of chloroprene rubber reinforced by multiwalled carbon nanotubes. Polymer Composites, 2014, 35, 2194-2202.	2.3	12
63	Mechanical and microwave absorbing properties of in situ prepared hydrogenated acrylonitrile–butadiene rubber/rare earth acrylate composites. Composites Part B: Engineering, 2014, 56, 497-503.	5.9	21
64	<i>In situ</i> ester–amide exchange reaction between polyamide 6 and ethyleneâ€vinyl acetate rubber during melt blending. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
65	Study on ester-amide exchange reactions between Nylon 1010 and Ethylene-vinyl acetate rubber with different metal derivatives. Journal of Polymer Research, 2014, 21, 1.	1.2	2
66	Mechanical, thermal conductive, and dielectric properties of fluoroelastomer/reduced graphene oxide composites <i>in situ</i> prepared by solvent thermal reduction. Polymer Composites, 2014, 35, 1779-1785.	2.3	16
67	Reactive processing of ethylene-vinyl acetate rubber/polyamide blends via a dynamic transesterification reaction. Polymer Bulletin, 2014, 71, 1505-1521.	1.7	7
68	Study on ester–amide exchange reactions between Nylon 1010 and Ethyleneâ€vinyl acetate rubber. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
69	Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polymer Degradation and Stability, 2013, 98, 1549-1555.	2.7	62
70	Physical properties and crystallization behavior of ethylene-vinyl acetate rubber/polyamide/graphene oxide thermoplastic elastomer nanocomposites. RSC Advances, 2013, 3, 26166.	1.7	13
71	Thermal conductivity of micro/nano filler filled polymeric composites. RSC Advances, 2013, 3, 6417.	1.7	21
72	Structure/Property Relationships of Partially Crosslinked Poly(butylene succinate). Macromolecular Materials and Engineering, 2013, 298, 910-918.	1.7	21

#	Article	IF	CITATIONS
73	Morphology and mechanical properties of ethyleneâ€vinyl acetate rubber/polyamide thermoplastic elastomers. Journal of Applied Polymer Science, 2013, 130, 338-344.	1.3	18
74	Microwaveâ€absorbing performance and mechanical properties of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 T nanotubes and silicon carbide. Journal of Applied Polymer Science, 2013, 130, 345-351.	f 50 707 T 1.3	d (chloride)/ac 13
75	Effects of blending time and catalyst on the properties of nylon 1010/acrylate rubber blends. Journal of Applied Polymer Science, 2013, 130, 4587-4597.	1.3	0
76	Prediction of thermal conductivity of SiC-filled emulsion-polymerized styrene-butadiene rubber composites by finite element method. Journal of Reinforced Plastics and Composites, 2012, 31, 1586-1598.	1.6	7
77	Effect of liquid isoprene rubber on dynamic mechanical properties of emulsionpolymerized styrene/butadiene rubber vulcanizates. Polymer International, 2012, 61, 531-538.	1.6	15
78	Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Freeâ€Radical Grafting Initiator. Macromolecular Materials and Engineering, 2012, 297, 402-410.	1.7	140
79	Enhanced microwave absorbing performance of hydrogenated acrylonitrile–butadiene rubber/multi-walled carbon nanotube composites by in situ prepared rare earth acrylates. Composites Science and Technology, 2012, 72, 696-701.	3.8	29
80	Electromagnetic characteristic and microwave absorbing performance of different carbon-based hydrogenated acrylonitrile–butadiene rubber composites. Materials Chemistry and Physics, 2012, 133, 176-181.	2.0	45
81	A study on the curing kinetics of epoxycyclohexyl polyhedral oligomeric silsesquioxanes and hydrogenated carboxylated nitrile rubber by dynamic differential scanning calorimetry. Journal of Applied Polymer Science, 2012, 123, 3128-3136.	1.3	11
82	Green Approach To Prepare Graphene-Based Composites with High Microwave Absorption Capacity. Journal of Physical Chemistry C, 2011, 115, 11673-11677.	1.5	314
83	Effect of ethylene-acrylic acid copolymer on flame retardancy and properties of LLDPE/EAA/MH composites. Polymer Degradation and Stability, 2011, 96, 2215-2220.	2.7	29
84	Study on thermally conductive ESBR vulcanizates. Polymer Bulletin, 2011, 67, 1091-1104.	1.7	17
85	An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/poly (octyleneâ€ <i>co</i> â€ethylene) blends. Polymers for Advanced Technologies, 2011, 22, 1414-1421.	1.6	35
86	Curing reactions and properties of organic–inorganic composites from hydrogenated carboxylated nitrile rubber and epoxycyclohexyl polyhedral oligomeric silsesquioxanes. Polymer International, 2011, 60, 422-429.	1.6	15
87	Thermal degradation behavior of lowâ€halogen flame retardant PC/PPFBS/PDMS. Journal of Applied Polymer Science, 2011, 119, 2730-2736.	1.3	11
88	Study on the properties of ethylene-vinyl acetate rubber vulcanizate filled with superfluous magnesium hydroxide/methacrylic acid. Journal of Applied Polymer Science, 2011, 119, 1813-1819.	1.3	7
89	Synergistic effect of vermiculite on the intumescent flame retardance of polypropylene. Journal of Applied Polymer Science, 2011, 120, 1225-1233.	1.3	32
90	Effect of methacrylic acid on the properties of Ethylene–Vinylene acetate rubber vulcanizates reinforced by magnesium hydroxide. Journal of Applied Polymer Science, 2011, 121, 279-285.	1.3	2

#	Article	IF	CITATIONS
91	Comparison of the toughening effects of different elastomers on nylon 1010. Journal of Applied Polymer Science, 2011, 121, 3340-3346.	1.3	7
92	Reinforcement of hydrogenated carboxylated nitrile–butadiene rubber with exfoliated graphene oxide. Carbon, 2011, 49, 1608-1613.	5.4	164
93	Hydrogenated carboxylated nitrile rubber/modified zinc carbonate basic composites with photoluminescence properties. European Polymer Journal, 2011, 47, 1135-1141.	2.6	10
94	Blends of poly(2,6â€dimethylâ€1,4â€phenylene oxide)/polyamide 6 toughened by maleated polystyreneâ€based copolymers: Mechanical properties, morphology, and rheology. Journal of Applied Polymer Science, 2010, 115, 3385-3392.	1.3	26
95	Compatibilization of poly(2,6â€dimethylâ€1,4â€phenylene oxide)/polyamide 6 blends with styrene–maleic anhydride copolymer: Mechanical properties, morphology, crystallization, and melting behavior. Journal of Applied Polymer Science, 2010, 118, 3545-3551.	1.3	12
96	Thermal degradation behavior of styreneâ€butadieneâ€styrene triâ€block copolymer/multiwalled carbon nanotubes composites. Journal of Applied Polymer Science, 2009, 112, 524-531.	1.3	33
97	Investigation on the fracture behavior and morphology of maleated poly(ethylene 1â€octene) toughened and glass fiberâ€reinforced nylon 1010. Journal of Applied Polymer Science, 2009, 113, 181-189.	1.3	7
98	Nonisothermal decomposition kinetics of nylon 1010/POSS composites. Journal of Applied Polymer Science, 2009, 113, 17-23.	1.3	16
99	Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. Journal of Applied Polymer Science, 2009, 113, 3095-3102.	1.3	73
100	Morphology, mechanical properties, and thermal stability of poly(<scp>L</scp> â€lactic) Tj ETQq0 0 0 rgBT /Overlo Science, 2009, 113, 3630-3637.	ock 10 Tf 1.3	50 387 Td (a 21
101	Mechanical properties, flame retardancy, hotâ€air ageing, and hotâ€oil ageing resistance of ethyleneâ€vinyl acetate rubber/hydrogenated nitrileâ€butadiene rubber/magnesium hydroxide composites. Journal of Applied Polymer Science, 2009, 114, 3310-3318.	1.3	16
102	Toughening modification of PLLA/PBS blends via in situ compatibilization. Polymer Engineering and Science, 2009, 49, 26-33.	1.5	242
103	Toughening effects of ethylene–vinyl acetate copolymers with different vinyl acetate content and viscosity on nylon 1010 blends. Polymer Engineering and Science, 2009, 49, 2393-2399.	1.5	3
104	Morphology, mechanical properties, and durability of poly(lactic acid) plasticized with Di(isononyl) cyclohexaneâ€1,2â€dicarboxylate. Polymer Engineering and Science, 2009, 49, 2414-2420.	1.5	39
105	Toughening effect of ethyleneâ€vinyl acetate rubber on nylon 1010 compatibilized by maleated ethyleneâ€vinyl acetate copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 434-444.	2.4	17
106	Effect of EVM/EVAâ€gâ€MAH ratio on the structure and properties of nylon 1010 blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 877-887.	2.4	11
107	Effect of PPOâ€ <i>g</i> â€MA on structures and properties of PPO/PA6/short glass fiber composites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2188-2197.	2.4	20
108	Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Composites Science and Technology, 2009, 69, 2212-2217.	3.8	80

#	Article	IF	CITATIONS
109	Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. Journal of Applied Polymer Science, 2008, 107, 1718-1723.	1.3	29
110	Properties of poly(butylene terephthalate) chainâ€extended by epoxycyclohexyl polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science, 2008, 107, 825-830.	1.3	15
111	Polyamide 6/maleated ethylene–propylene–diene rubber/organoclay composites with or without glycidyl methacrylate as a compatibilizer. Journal of Applied Polymer Science, 2008, 110, 1870-1879.	1.3	9
112	Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polymer Degradation and Stability, 2008, 93, 1364-1369.	2.7	75
113	Reinforcement of hydrogenated carboxylated nitrile–butadiene rubber by multi-walled carbon nanotubes. Applied Surface Science, 2008, 255, 2162-2166.	3.1	68
114	Reinforcement of styrene–butadiene–styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon, 2007, 45, 2621-2627.	5.4	66
115	Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black. European Polymer Journal, 2007, 43, 5097-5106.	2.6	51
116	Isothermal crystallization kinetics of polypropylene with silane functionalized multi-walled carbon nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1616-1624.	2.4	73
117	Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polymer Bulletin, 2007, 58, 747-755.	1.7	28
118	Microstructure, Interfacial Interactions, and Rheological Properties of PC/AES/Montmorillonite Composites. Journal of Macromolecular Science - Physics, 2006, 45, 1159-1169.	0.4	3
119	Rheological Properties and Morphology of PC/AES Blends. Journal of Macromolecular Science - Physics, 2006, 45, 987-1004.	0.4	4
120	Reinforcement effect of MAA on nano-CaCo3-filled EPDM vulcanizates and possible mechanism. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1226-1236.	2.4	31
121	Effect of silicon dioxide on crystallization and melting behavior of polypropylene. Journal of Applied Polymer Science, 2006, 100, 1889-1898.	1.3	34
122	Rheological properties of PDMS filled with CaCo3: The effect of filler particle size and concentration. Journal of Applied Polymer Science, 2006, 101, 3395-3401.	1.3	21
123	Effect of different carbon fillers on the properties of PP composites: Comparison of carbon black with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2006, 102, 4823-4830.	1.3	99
124	Fracture behavior of PVC/Blendex/nano-CaCO3 composites. Journal of Applied Polymer Science, 2005, 953-961.	1.3	21
125	Isothermal crystallization kinetics of PP in PP/Mg(OH)2 composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1914-1923.	2.4	17
126	Morphology and fracture behavior of toughening-modified poly(vinyl chloride)/organophilic montmorillonite composites. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 286-295.	2.4	19

#	Article	IF	CITATIONS
127	Fracture morphology and mechanical properties of ethylene/vinyl acetate rubber vulcanizates reinforced byin situ prepared sodium methacrylate. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1715-1724.	2.4	14
128	Influence of the clay modification and compatibilizer on the structure and mechanical properties of ethylene-propylene-diene rubber/montmorillonite composites. Journal of Applied Polymer Science, 2004, 92, 638-646.	1.3	94
129	Processing thermal stability and degradation kinetics of poly(vinyl chloride)/montmorillonite composites. Journal of Applied Polymer Science, 2004, 92, 1521-1526.	1.3	31
130	Polymerization conversion and structure of magnesium methacrylate in ethylene-vinyl acetate rubber vulcanizates. Journal of Applied Polymer Science, 2004, 93, 2379-2384.	1.3	10
131	Effects of silane coupling agents on the vulcanization characteristics of natural rubber. Journal of Applied Polymer Science, 2004, 94, 1511-1518.	1.3	41
132	Effect of dynamic vulcanization on properties and morphology of nylon/SAN/NBR blends: A new compatibilization method of nylon/ABS blends. Journal of Applied Polymer Science, 2003, 87, 2057-2062.	1.3	13
133	Mechanical properties of high-density polyethylene/scrap rubber powder composites modified with ethylene-propylene-diene terpolymer, dicumyl peroxide, and silicone oil. Journal of Applied Polymer Science, 2003, 88, 2020-2027.	1.3	26
134	Polyamide-reinforced ethylene-propylene-diene rubber compatibilized with chlorinated polyethylene. Journal of Applied Polymer Science, 2003, 89, 1727-1736.	1.3	3
135	Properties of EVM vulcanizates reinforced byin situ prepared sodium methacrylate. Journal of Applied Polymer Science, 2003, 89, 2192-2200.	1.3	21
136	EPDM/polyamide TPV compatibilized by chlorinated polyethylene. Polymer Testing, 2003, 22, 9-16.	2.3	51
137	Brittle–ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer, 2003, 44, 5047-5052.	1.8	139
138	Reinforcement of EPDM byin situ prepared zinc dimethacrylate. Journal of Applied Polymer Science, 2002, 84, 1339-1345.	1.3	100
139	In situ preparation of magnesium methacrylate to reinforce NBR. Journal of Applied Polymer Science, 2002, 84, 1403-1408.	1.3	28
140	Reinforcement of peroxide-cured styrene-butadiene rubber vulcanizates by mathacrylic acid and magnesium oxide. Journal of Applied Polymer Science, 2002, 85, 2667-2676.	1.3	32
141	Effect of magnesium methacrylate on the mechanical properties of EVM vulcanizate. Polymer Testing, 2002, 21, 889-895.	2.3	35
142	Effect of Methacrylic Acid on the Mechanical Properties of Peroxide-Cured Sbr Vulcanizates Filled with Al(Oh) ₃ . Polymers and Polymer Composites, 2001, 9, 523-529.	1.0	4
143	Metallic Methacrylate as a Reactive Filler to Reinforce Ethylene-Propylene-Diene Rubber. Polymers and Polymer Composites, 2001, 9, 275-282.	1.0	21
144	Enhanced positive temperature coefficient effect by crosslinking reaction for silicone rubber/carbon black composites with high pressure sensitivity. Journal of Applied Polymer Science, 0, , 51682.	1.3	5

#	Article	IF	CITATIONS
145	Effect of Pyrolysis Carbon Black from Waste Tire on the Mechanical Properties of SSBR/BR Blend. Macromolecular Materials and Engineering, 0, , 2100944.	1.7	3