Vitor Sencadas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science - Physics, 2009, 48, 514-525.	0.4	472
2	Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule, 2018, 2, 1534-1547.	11.7	468
3	Boosting the Potassium Storage Performance of Alloyâ€Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials, 2018, 8, 1703288.	10.2	382
4	Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2015, 136, 46-55.	2.5	364
5	Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Materials and Structures, 2010, 19, 065010.	1.8	352
6	Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. Soft Materials, 2010, 8, 274-287.	0.8	241
7	An Allâ€Integrated Anode via Interlinked Chemical Bonding between Doubleâ€Shelled–Yolkâ€Structured Silicon and Binder for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1703028.	11.1	238
8	Effect of filler size and concentration on the structure and properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50 462 Td (⁻
9	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3638-3644.	7.2	211
10	Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy, 2017, 36, 166-175.	8.2	185
11	Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 2006, 352, 2226-2229.	1.5	171
12	Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 3241-3249.	4.0	171
13	Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2172-2175.	2.1	148
14	Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors and Actuators A: Physical, 2013, 196, 55-62.	2.0	138
15	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	1.7	128
16	Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers. Soft Robotics, 2018, 5, 24-35.	4.6	128
17	The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon, 2009, 47, 2590-2599.	5.4	124

18Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects,
Regulations and Removal by Wastewater Treatment Technologies. Water (Switzerland), 2018, 10, 107.1.2124

#	Article	IF	CITATIONS
19	Influence of Ferrite Nanoparticle Type and Content on the Crystallization Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride). Langmuir, 2011, 27, 7241-7249.	1.6	121
20	Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 2016, 58, 126-140.	5.6	117
21	Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochimica Acta, 2004, 424, 201-207.	1.2	115
22	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	2.8	115
23	Relationship between processing conditions, defects and thermal degradation of poly(vinylidene) Tj ETQq1 1 0.78	4314 rgBT 1.5	ſ ĮQyerlock
24	Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators. Journal of Membrane Science, 2012, 407-408, 193-201.	4.1	110
25	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	1.7	106
26	Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly- <scp>l</scp> -lactic acid nanofibers for non-invasive physiological signal monitoring. Journal of Materials Chemistry B, 2017, 5, 7352-7359.	2.9	104
27	Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology, 2009, 20, 035703.	1.3	102
28	α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 2006, 514-516, 872-876.	0.3	96
29	α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Materials Chemistry and Physics, 2010, 122, 87-92.	2.0	96
30	Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Composites Part B: Engineering, 2015, 72, 130-136.	5.9	96
31	Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 177-180.	0.9	95
32	New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2793-2801.	2.4	92
33	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 2015, 15, 351-356.	2.0	91
34	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	5.1	90
35	Development of magnetoelectric CoFe ₂ O ₄ /poly(vinylidene fluoride) microspheres. RSC Advances, 2015, 5, 35852-35857.	1.7	88
36	PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polymer Testing, 2014, 34, 64-71.	2.3	87

#	Article	IF	CITATIONS
37	Dynamic mechanical analysis and creep behaviour of β-PVDF films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 336-340.	2.6	84
38	Triboelectric Nanogenerator versus Piezoelectric Generator at Low Frequency (<4ÂHz): A Quantitative Comparison. IScience, 2020, 23, 101286.	1.9	84
39	Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials (Bristol), 2012, 7, 035004.	1.7	83
40	Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77, 105118.	8.2	82
41	Ultra-stretchable MWCNT–Ecoflex piezoresistive sensors for human motion detection applications. Composites Science and Technology, 2019, 173, 118-124.	3.8	80
42	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	1.9	79
43	Magnetoelectric CoFe ₂ O ₄ /polyvinylidene fluoride electrospun nanofibres. Nanoscale, 2015, 7, 8058-8061.	2.8	78
44	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 2014, 4, 33013-33021.	1.7	77
45	Electro-mechanical properties of triblock copolymer styrene–butadiene–styrene/carbon nanotube composites for large deformation sensor applications. Sensors and Actuators A: Physical, 2013, 201, 458-467.	2.0	76
46	TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. Journal of Materials Science, 2016, 51, 6974-6986.	1.7	76
47	Rational Design of Coreâ€5hell ZnTe@Nâ€Doped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage. Advanced Functional Materials, 2021, 31, 2006425.	7.8	75
48	A novel electrospun, hydrophobic, and elastomeric styrene-butadiene-styrene membrane for membrane distillation applications. Journal of Membrane Science, 2018, 549, 420-427.	4.1	74
49	Effect of the ceramic grain size and concentration onÂtheÂdynamical mechanical and dielectric behavior ofÂpoly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A: Materials Science and Processing, 2009, 96, 899-908.	1.1	73
50	Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy, 2016, 26, 722-728.	8.2	72
51	Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy, 2019, 66, 104106.	8.2	72
52	Local piezoelectric activity of single poly(L-lactic acid) (PLLA) microfibers. Applied Physics A: Materials Science and Processing, 2012, 109, 51-55.	1.1	71
53	Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. European Physical Journal E, 2012, 35, 41.	0.7	68
54	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	1.7	67

#	Article	IF	CITATIONS
55	Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. European Polymer Journal, 2011, 47, 2442-2450.	2.6	66
56	Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(I-lactide) electrospun mats. Soft Matter, 2012, 8, 5818.	1.2	66
57	Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polymer Testing, 2013, 32, 995-1000.	2.3	66
58	Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites. Journal of Materials Science, 2013, 48, 1172-1179.	1.7	65
59	Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing. Journal of Polymer Research, 2011, 18, 1451-1457.	1.2	64
60	Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research - Part A, 2015, 103, 919-928.	2.1	63
61	Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 2017, 167, 52-58.	5.1	58
62	Bacterial Cellulose As a Support for the Growth of Retinal Pigment Epithelium. Biomacromolecules, 2015, 16, 1341-1351.	2.6	57
63	Powering Implantable and Ingestible Electronics. Advanced Functional Materials, 2021, 31, 2009289.	7.8	57
64	Environmentally Friendly and Biodegradable Ultrasensitive Piezoresistive Sensors for Wearable Electronics Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 8761-8772.	4.0	55
65	The piezoresistive effect in polypropylene—carbon nanofibre composites obtained by shear extrusion. Smart Materials and Structures, 2010, 19, 065013.	1.8	52
66	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polymer Testing, 2012, 31, 1062-1069.	2.3	52
67	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30-38.	5.9	52
68	Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene) Tj ETQq0 0 (OrgBŢ/Over	lock 10 Tf 50
69	Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites. Nanoscale Research Letters, 2011, 6, 302.	3.1	50
70	Surface roughness dependent osteoblast and fibroblast response on poly(<scp>l</scp> -lactide) films and electrospun membranes. Journal of Biomedical Materials Research - Part A, 2015, 103, 2260-2268.	2.1	50
71	Spray Drying: An Overview. , 0, , .		50
72	Relationship between the microstructure and the microscopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride). Applied Physics A: Materials Science and Processing, 2009, 95, 875-880.	1.1	49

#	Article	IF	CITATIONS
73	PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films, 2008, 517, 1161-1166.	0.8	48
74	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	1.7	48
75	Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2605-2609.	0.8	45
76	Synthesis of highly-stretchable graphene – poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications. Composites Science and Technology, 2018, 162, 14-22.	3.8	45
77	Processing, characterisation and electromechanical behaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications. Composites Science and Technology, 2017, 142, 163-170.	3.8	44
78	Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol) Tj ETQq0 0 0 r 2017, 508, 87-94.	gBT /Overl 5.0	ock 10 Tf 50 43
79	Influence of Silver Nanoparticles Concentration on the <i>α</i> - to <i>β</i> -Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2910-2916.	0.9	42
80	Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 2010, 45, 1328-1335.	1.7	41
81	Orthogonal experimental design of titanium dioxide—Poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications. Journal of Environmental Chemical Engineering, 2016, 4, 3151-3158.	3.3	41
82	The Role of Solvent Evaporation in the Microstructure of Electroactive β-Poly(Vinylidene Fluoride) Membranes Obtained by Isothermal Crystallization. Soft Materials, 2010, 9, 1-14.	0.8	40
83	Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. Journal of Polymer Research, 2011, 18, 1653-1658.	1.2	40
84	Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. Journal of Materials Science: Materials in Medicine, 2013, 24, 395-403.	1.7	40
85	Comparison of rheological behaviors with fumed silica-based shear thickening fluids. Korea Australia Rheology Journal, 2016, 28, 197-205.	0.7	40
86	Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications. Journal of Colloid and Interface Science, 2017, 504, 101-110.	5.0	40
87	Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene) Tj ETQq1 1 Science and Processing, 2012, 109, 685-691.	0.784314 1.1	rgBT /Overl 39
88	Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids and Surfaces B: Biointerfaces, 2016, 139, 1-9.	2.5	39
89	Poly[(vinylidene fluoride)â€ <i>co</i> â€ŧrifluoroethylene] Membranes Obtained by Isothermal Crystallization from Solution. Macromolecular Materials and Engineering, 2010, 295, 523-528.	1.7	38
90	Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. Materials Chemistry and Physics, 2015, 164, 91-97.	2.0	38

#	Article	IF	CITATIONS
91	Large area and ultra-thin compliant strain sensors for prosthetic devices. Sensors and Actuators A: Physical, 2017, 266, 56-64.	2.0	36
92	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science, 2014, 54, 1608-1617.	1.5	35
93	Synthesis of methotrexate-loaded tantalum pentoxide–poly(acrylic acid) nanoparticles for controlled drug release applications. Journal of Colloid and Interface Science, 2019, 538, 286-296.	5.0	34
94	Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 2010, 356, 2127-2133.	1.5	33
95	Evaluation of the main processing parameters influencing the performance of poly(vinylidene) Tj ETQq1 1 0.7843 2013, 17, 861-870.	.4 rgBT /C 1.2	verlock 10 33
96	Performance of electroactive poly(vinylidene fluoride) against UV radiation. Polymer Testing, 2008, 27, 818-822.	2.3	32
97	The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. Journal of Materials Science, 2012, 47, 8103-8111.	1.7	32
98	Suppression of the photocatalytic activity of TiO 2 nanoparticles encapsulated by chitosan through a spray-drying method with potential for use in sunblocking applications. Powder Technology, 2018, 329, 252-259.	2.1	32
99	Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene) Tj ETQq1 10.78	4314 rgB ⁻ 1.7	T /Overlock
100	Microscopic origin of the high-strain mechanical response of poled and non-poled poly(vinylidene) Tj ETQq0 0 0 rg	BT /Overla 1.5	ock 10 Tf 50
101	Effect of the microsctructure and lithium-ion content in poly[(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 applications. Solid State Ionics, 2012, 217, 19-26.	Tf 50 347 1.3	Td (fluoride 29
102	Bioactive albumin functionalized polylactic acid membranes for improved biocompatibility. Reactive and Functional Polymers, 2013, 73, 1399-1404.	2.0	29
103	Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polymer Engineering and Science, 2014, 54, 117-128.	1.5	27
104	Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 2015, 81, 608-614.	3.6	27
105	Thermal characterization of a vinylidene fluoride-trifluorethylene (75–25) (%mol) copolymer film. Journal of Non-Crystalline Solids, 2006, 352, 5376-5381.	1.5	26
106	Highly Sensitive Soft Foam Sensors to Empower Robotic Systems. Advanced Materials Technologies, 2019, 4, 1900423.	3.0	26
107	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	2.3	25
108	Synthesis, physical and magnetic properties of BaFe12O19/P(VDF-TrFE) multifunctional composites. European Polymer Journal, 2015, 69, 224-231.	2.6	25

#	Article	IF	CITATIONS
109	Strain analysis of photocatalytic TiO2 thin films on polymer substrates. Thin Solid Films, 2008, 516, 1434-1438.	0.8	24
110	Effect of multi-walled carbon nanotubes on the cross-linking density of the poly(glycerol sebacate) elastomeric nanocomposites. Journal of Colloid and Interface Science, 2018, 521, 24-32.	5.0	24
111	Processing and size range separation of pristine and magnetic poly(I -lactic acid) based microspheres for biomedical applications. Journal of Colloid and Interface Science, 2016, 476, 79-86.	5.0	23
112	Reusable Flexible Concentric Electrodes Coated With a Conductive Graphene Ink for Electrotactile Stimulation. Frontiers in Bioengineering and Biotechnology, 2018, 6, 179.	2.0	23
113	Fatigue prediction in fibrin poly-Îμ-caprolactone macroporous scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 55-61.	1.5	22
114	Exploring the Properties of Genetically Engineered Silkâ€Elastin‣ike Protein Films. Macromolecular Bioscience, 2015, 15, 1698-1709.	2.1	22
115	Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications. Ferroelectrics, 2012, 430, 103-107.	0.3	20
116	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	0.4	20
117	Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. Journal of Materials Science, 2013, 48, 6833-6840.	1.7	20
118	Attenuation of UV absorption by poly(lactic acid)-iron oxide nanocomposite particles and their potential application in sunscreens. Chemical Engineering Journal, 2021, 405, 126843.	6.6	20
119	Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 2004, 129, 5-8.	0.9	19
120	Mechanical performance of elastomeric PGS scaffolds under dynamic conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103474.	1.5	19
121	Thermal, dielectrical and mechanical response of \hat{I}_{\pm} and \hat{I}^2 -poly(vinilydene fluoride)/Co-MgO nanocomposites. Nanoscale Research Letters, 2011, 6, 257.	3.1	18
122	Antibacterial and Antifungal Activity of Poly(Lactic Acid)–Bovine Lactoferrin Nanofiber Membranes. Macromolecular Bioscience, 2018, 18, 1700324.	2.1	18
123	Mechanical Characterization and Influence of the High Temperature Shrinkage of β-PVDF Films on its Electromechanical Properties. Ferroelectrics, 2003, 294, 61-71.	0.3	17
124	Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(Zr0.53Ti0.47)O3 composites. Journal of Polymer Research, 2012, 19, 1.	1.2	17
125	Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications. Materials Science and Engineering C, 2017, 75, 1184-1190.	3.8	17
126	Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomedical Materials (Bristol), 2017, 12, 045011.	1.7	17

#	Article	IF	CITATIONS
127	Energy Harvesting Applications from Poly(ε-caprolactone) Electrospun Membranes. ACS Applied Polymer Materials, 2020, 2, 2105-2110.	2.0	17
128	Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polymer Engineering and Science, 2012, 52, 1293-1300.	1.5	16
129	Modifying Fish Gelatin Electrospun Membranes for Biomedical Applications: Cross-Linking and Swelling Behavior. Soft Materials, 2014, 12, 247-252.	0.8	16
130	Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes. Journal of Electroanalytical Chemistry, 2016, 778, 57-65.	1.9	16
131	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie, 2020, 132, 3667-3673.	1.6	16
132	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	2.8	16
133	Multifunctional skin-compliant wearable sensors for monitoring human condition applications. Applied Materials Today, 2022, 26, 101361.	2.3	16
134	Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition. Thin Solid Films, 2007, 515, 7658-7661.	0.8	14
135	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 123-130.	2.0	14
136	Electrical properties of intrinsically conductive core–shell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 2014, 197, 198-203.	2.1	14
137	<i>In vitro</i> mechanical fatigue behavior of polyâ€É›â€caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1037-1043.	1.6	14
138	Design of polymeric core-shell carriers for combination therapies. Journal of Colloid and Interface Science, 2021, 587, 499-509.	5.0	14
139	Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and Modeling in Mechanobiology, 2016, 15, 471-478.	1.4	13
140	Development of ciprofloxacin-loaded poly(vinyl alcohol) dry powder formulations for lung delivery. International Journal of Pharmaceutics, 2018, 547, 114-121.	2.6	13
141	Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	12
142	Processing and characterization of α-elastin electrospun membranes. Applied Physics A: Materials Science and Processing, 2014, 115, 1291-1298.	1.1	12
143	Nano-sunscreens – a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union. Critical Reviews in Toxicology, 2019, 49, 122-139.	1.9	12
144	Superomniphilic Poly(glycerol sebacate)–Poly(<scp>l</scp> â€lactic acid) Electrospun Membranes for Oil Spill Remediation. Advanced Materials Interfaces, 2017, 4, 1700484.	1.9	11

#	Article	IF	CITATIONS
145	Low-Hysteresis and Ultrasensitive Microcellular Structures for Wearable Electronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 1632-1643.	4.0	11
146	Piezoresistive sensors for force mapping of hip-prostheses. Sensors and Actuators A: Physical, 2013, 195, 133-138.	2.0	10
147	Biodegradable Polymers for Medical Applications. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	10
148	Thermal degradation of Pb(Zr0.53Ti0.47)O3/poly(vinylidene fluoride) composites as a function of ceramic grain size and concentration. Journal of Thermal Analysis and Calorimetry, 2013, 114, 757-763.	2.0	9
149	Mechanical fatigue performance of PCLâ€chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 330-338.	1.6	9
150	Development and optimization of ciprofloxacin-loaded gelatin microparticles by single-step spray-drying technique. Powder Technology, 2018, 330, 201-209.	2.1	9
151	Hydrothermal synthesis of rutile TiO2 nanorods and their decoration with CeO2 nanoparticles as low-photocatalytic active ingredients in UV filtering applications. Journal of Materials Science, 2020, 55, 8095-8108.	1.7	9
152	Chain Reorientation in -PVDF Films Upon Transverse Mechanical Deformation Studied by SEM and Dielectric Relaxation. Ferroelectrics, 2003, 294, 73-83.	0.3	9
153	Electrical and Microstructural Changes of β-PVDF under Uniaxial Stress Studied by Scanning Force Microscopy. Materials Science Forum, 2006, 514-516, 915-919.	0.3	8
154	Molecular Orientation and Degree of Crystallinity of Piezoelectric Poly(Vinylidene Fluoride) Films Exclusively in the β Phase. Ferroelectrics, 2008, 370, 29-35.	0.3	8
155	Smart-Responsive Colloidal Capsules as an Emerging Tool to Design a Multifunctional Lubricant Additive. ACS Applied Materials & Interfaces, 2021, 13, 7714-7724.	4.0	8
156	Fabrication of Poly(lactic acid)-Poly(ethylene oxide) Electrospun Membranes with Controlled Micro to Nanofiber Sizes. Journal of Nanoscience and Nanotechnology, 2012, 12, 6746-6753.	0.9	7
157	Intrinsic Effect of Nanoparticles on the Mechanical Rupture of Doubledâ€5hell Colloidal Capsule via In Situ TEM Mechanical Testing and STEM Interfacial Analysis. Small, 2020, 16, e2001978.	5.2	7
158	Room-temperature self-healing piezoresistive sensors. Composites Science and Technology, 2021, 211, 108856.	3.8	7
159	Effect of Poling on the Mechanical Properties of β-Poly(Vinylidene Fluoride). Materials Science Forum, 2006, 514-516, 951-955.	0.3	6
160	Influence of the Stabilization Process on the Piezotronic Performance of Electrospun Silk Fibroin. Macromolecular Materials and Engineering, 2020, 305, 2000165.	1.7	6
161	Functionally graded electroactive Poly(vinylidene fluoride) polymers. International Journal of Materials and Product Technology, 2010, 39, 178.	0.1	5
162	Large Area Microfabrication of Electroactive Polymeric Structures Based on Near-Field Electrospinning. Procedia Engineering, 2011, 25, 888-891.	1.2	5

#	Article	IF	CITATIONS
163	Chain Reorientation in \hat{l}^2 -PVDF Films Upon Transverse Mechanical Deformation Studied by SEM and Dielectric Relaxation. Ferroelectrics, 2003, 294, 73-83.	0.3	4
164	A 3D Printed Soft Force Sensor for Soft Haptics. , 2020, , .		4
165	Behaviour of the Ferroelectric Phase Transition of P(VDF/TrFE) (75/25) with Increasing Deformation. Ferroelectrics, 2004, 304, 23-26.	0.3	3
166	Influence of the Crystallization Kinetics on the Microstructural Properties of Î ³ -PVDF. Materials Science Forum, 2008, 587-588, 534-537.	0.3	3
167	Processing, Characterization, and in Vivo Evaluation of Poly(<scp>l</scp> -lactic acid)-Fish Gelatin Electrospun Membranes for Biomedical Applications. ACS Applied Bio Materials, 2018, 1, 226-236.	2.3	3
168	Electrical Response of β-PVDF in a Constant Uniaxial Strain Rate Deformation. Ferroelectrics, 2004, 304, 43-46.	0.3	2
169	Electrical and Microstructural Changes of β-PVDF under Different Processing Conditions by Scanning Force Microscopy. Materials Research Society Symposia Proceedings, 2006, 949, 1.	0.1	2
170	Liquid Flow Sensor Based on PVDF in its Beta Phase. , 2007, , .		2
171	Photodegradation Studies of Poly(Vinylidene Fluoride). Materials Science Forum, 0, 587-588, 543-547.	0.3	2
172	Co-delivery of inhalable therapies: Controlling active ingredients spatial distribution and temporal release. Materials Science and Engineering C, 2021, 122, 111831.	3.8	2
173	Insight into the Mechanical Behavior of Hybrid Colloidal Capsules at Elevated Temperatures by Direct Visualization of the Interfacial Solid-State Reactions. Journal of Physical Chemistry C, 2021, 125, 17462-17473.	1.5	2
174	Poly(vinylidene fluoride) Electrospun Fibers for Electroactive Scaffold Aplications: Influence of the Applied Voltage on Morphology and Polymorphism. , 2008, , .		1
175	Development of an elastomeric resin for digital light processing printing. Journal of Applied Polymer Science, 0, , 52123.	1.3	1
176	3D printed linear soft multi-mode actuators expanding robotic applications. Soft Matter, 2022, 18, 1911-1919.	1.2	1
177	Influence of the Crystallisation Kinetics on the Microstructural Properties of α-PVDF. Materials Research Society Symposia Proceedings, 2006, 949, 1	0.1	0
178	Advanced techniques for characterizing bioinspired materials. , 2017, , 177-214.		0