List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. Methods in Ecology and Evolution, 2023, 14, 415-430.	2.2	16
2	Using target capture to address conservation challenges: Populationâ€level tracking of a globallyâ€ŧraded herbal medicine. Molecular Ecology Resources, 2022, 22, 212-224.	2.2	11
3	DNA metabarcoding using nrITS2 provides highly qualitative and quantitative results for airborne pollen monitoring. Science of the Total Environment, 2022, 806, 150468.	3.9	19
4	Pulled Diversification Rates, Lineages-Through-Time Plots, and Modern Macroevolutionary Modeling. Systematic Biology, 2022, 71, 758-773.	2.7	30
5	Quantifying an online wildlife trade using a web crawler. Biodiversity and Conservation, 2022, 31, 855-869.	1.2	5
6	Novel methods to characterise spatial distribution and enantiomeric composition of usnic acids in four Icelandic lichens. Phytochemistry, 2022, 200, 113210.	1.4	4
7	DNA barcoding and metabarcoding for quality control of botanicals and derived herbal products. , 2022, , 223-238.		2
8	eDNA metabarcoding reveals dietary niche overlap among herbivores in an Indian wildlife sanctuary. Environmental DNA, 2021, 3, 681-696.	3.1	9
9	Metabarcoding reveals low fidelity and presence of toxic species in short chain-of-commercialization of herbal products. Journal of Food Composition and Analysis, 2021, 97, 103767.	1.9	17
10	Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nature Plants, 2021, 7, 123-128.	4.7	29
11	Asymmetric contributions of seed and pollen to gene dispersal in the marsh orchid Dactylorhiza umbrosa in Asia Minor. Molecular Ecology, 2021, 30, 1791-1805.	2.0	8
12	Tradeâ€offs between reducing complex terminology and producing accurate interpretations from environmental DNA: Comment on "Environmental DNA: What's behind the term?―by Pawlowski et al., (2020). Molecular Ecology, 2021, 30, 4601-4605.	2.0	60
13	Neural networks for increased accuracy of allergenic pollen monitoring. Scientific Reports, 2021, 11, 11357.	1.6	17
14	DNA Metabarcoding for Quality Control of Basil, Oregano, and Paprika. Frontiers in Plant Science, 2021, 12, 665618.	1.7	14
15	Ethnopharmacology, biological activities and chemical compounds of Canarium strictum: An important resin-yielding medicinal tree in India. FìtoterapĂ¬Ă¢, 2021, 152, 104920.	1.1	1
16	Unexpected diversity in the diet of Doryteuthis sanpaulensis (Brakoniecki, 1984) (Mollusca:) Tj ETQq0 0 0 rgBT Research, 2021, 239, 105936.	/Overlock 0.9	10 Tf 50 147 4
17	Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna. Quaternary Science Reviews, 2021, 267, 107084.	1.4	6
18	Biogeographic origins of southern African Silene (Caryophyllaceae). Molecular Phylogenetics and	1.2	6

Evolution, 2021, 162, 107199.

#	Article	IF	CITATIONS
19	Conservation status revision and communities' perceptions of 22 Aloe species in Tanzania. Plant Ecology and Evolution, 2021, 154, 391-404.	0.3	2
20	DNA barcoding augments conventional methods for identification of medicinal plant species traded at Tanzanian markets. Journal of Ethnopharmacology, 2020, 250, 112495.	2.0	23
21	Juglans regia L. Juglandaceae. Ethnobotany of Mountain Regions, 2020, , 433-441.	0.0	0
22	Species-specific responses of "Critically Endangered―and "Least Concern―Aloe seed germination to environmental conditions in Tanzania. Global Ecology and Conservation, 2020, 24, e01241.	1.0	4
23	Phylogenetic diversity of the lichenized algal genus <i>Trebouxia</i> (Trebouxiophyceae, Chlorophyta): a new lineage and novel insights from fungal-algal association patterns of Icelandic cetrarioid lichens (Parmeliaceae, Ascomycota). Botanical Journal of the Linnean Society, 2020, 194, 460-468.	0.8	17
24	Bunium persicum (Boiss.) B. Fedtsch. Apiaceae. Ethnobotany of Mountain Regions, 2020, , 175-176.	0.0	0
25	Allium giganteum Regel Allium karataviense Regel. Allium rosenbachianum Regel Allium stipitatum Regel Allium suworowii Regel Allium tenuissimum L. Allium trautvetteranum Regel Amaryllidaceae. Ethnobotany of Mountain Regions, 2020, , 69-86.	0.0	Ο
26	Allium giganteum Regel Allium karataviense Regel. Allium rosenbachianum Regel Allium stipitatum Regel Allium suworowii Regel Allium tenuissimum L. Allium trautvetteranum Regel Amaryllidaceae. Ethnobotany of Mountain Regions, 2020, , 1-18.	0.0	0
27	Patent analysis as a novel method for exploring commercial interest in wild harvested species. Biological Conservation, 2020, 243, 108454.	1.9	9
28	A Review of Authenticity and Authentication of Commercial Ginseng Herbal Medicines and Food Supplements. Frontiers in Pharmacology, 2020, 11, 612071.	1.6	31
29	Ferula assa-foetida L. Ferula kuhistanica Korovin Ferula moschata (H. Reinsch) Koso-Pol. Ferula violacea Korovin Ferula sp. Apiaceae. Ethnobotany of Mountain Regions, 2020, , 1-7.	0.0	3
30	Juglans regia L. Juglandaceae. Ethnobotany of Mountain Regions, 2020, , 1-9.	0.0	2
31	Mentha arvensis L. Mentha longifolia (L.) L. Mentha spicata L. Menta × piperita L. Lamiaceae. Ethnobotany of Mountain Regions, 2020, , 1-9.	0.0	4
32	Ephedra equisetina Bunge Ephedra intermedia Schrenk ex C.A. Mey. Ephedra sinica Stapf Ephedra sp. Ephedraceae. Ethnobotany of Mountain Regions, 2020, , 1-7.	0.0	1
33	Bunium persicum (Boiss.) B. Fedtsch. Apiaceae. Ethnobotany of Mountain Regions, 2020, , 1-2.	0.0	0
34	Nepeta glutinosa Benth. Lamiaceae. Ethnobotany of Mountain Regions, 2020, , 519-523.	0.0	0
35	Mentha arvensis L. Mentha longifolia (L.) L. Mentha spicata L. Mentha × piperita L. Lamiaceae. Ethnobotany of Mountain Regions, 2020, , 499-507.	0.0	0
36	Nepeta glutinosa Benth. Lamiaceae. Ethnobotany of Mountain Regions, 2020, , 1-5.	0.0	0

#	Article	IF	CITATIONS
37	Ferula assa-foetida L. Ferula kuhistanica Korovin Ferula moschata (H. Reinsch) Koso-Pol. Ferula violacea Korovin Ferula sp. Apiaceae. Ethnobotany of Mountain Regions, 2020, , 325-331.	0.0	0
38	Ephedra equisetina Bunge Ephedra intermedia Schrenk ex C.A. Mey. Ephedra sinica Stapf Ephedra sp. Ephedraceae. Ethnobotany of Mountain Regions, 2020, , 291-297.	0.0	0
39	Ethnopharmacology of the club moss subfamily Huperzioideae (Lycopodiaceae, Lycopodiophyta): A phylogenetic and chemosystematic perspective. Journal of Ethnopharmacology, 2019, 245, 112130.	2.0	8
40	Hidden Rice Diversity in the Guianas. Frontiers in Plant Science, 2019, 10, 1161.	1.7	23
41	DNA Metabarcoding Authentication of Ayurvedic Herbal Products on the European Market Raises Concerns of Quality and Fidelity. Frontiers in Plant Science, 2019, 10, 68.	1.7	47
42	Phylogenetics of Dendrochilum (Orchidaceae): Evidence of pronounced morphological homoplasy and predominantly centric endemism. Taxon, 2019, 68, 1173-1188.	0.4	5
43	Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. South African Journal of Botany, 2019, 122, 214-224.	1.2	28
44	Diversity of Hypoxis species used in ethnomedicine in Tanzania. South African Journal of Botany, 2019, 122, 336-341.	1.2	2
45	Ethnobotany of dioecious species: Traditional knowledge on dioecious plants in India. Journal of Ethnopharmacology, 2018, 221, 56-64.	2.0	14
46	A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society, 2018, 186, 435-455.	0.8	191
47	Quantitative market survey of non-woody plants sold at Kariakoo Market in Dar es Salaam, Tanzania. Journal of Ethnopharmacology, 2018, 222, 280-287.	2.0	12
48	What's in the box? Authentication of Echinacea herbal products using DNA metabarcoding and HPTLC. Phytomedicine, 2018, 44, 32-38.	2.3	56
49	Recommended standards for conducting and reporting ethnopharmacological field studies. Journal of Ethnopharmacology, 2018, 210, 125-132.	2.0	120
50	Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication. Phytochemical Analysis, 2018, 29, 123-128.	1.2	148
51	Trade in Zambian Edible Orchids—DNA Barcoding Reveals the Use of Unexpected Orchid Taxa for Chikanda. Genes, 2018, 9, 595.	1.0	8
52	Botanical and floristic composition of the Historical Herbarium of Leonhard Rauwolf collected in the Near East (1573Â1575). Taxon, 2018, 67, 565-580.	0.4	8
53	The use of medicinal plants by pregnant women in Africa: A systematic review. Journal of Ethnopharmacology, 2018, 224, 297-313.	2.0	54
54	Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Scientific Reports, 2018, 8, 10561.	1.6	36

HUGO J DE BOER

#	Article	IF	CITATIONS
55	Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evolutionary Biology, 2018, 18, 44.	3.2	45
56	Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing <i>Amomum</i> as a monophyletic genus. Taxon, 2018, 67, 6-36.	0.4	58
57	Medicinal and aromatic plant cultivation in the Swat valley, north-western Pakistan, for economic development and biodiversity conservation. Genetic Resources and Crop Evolution, 2017, 64, 237-245.	0.8	5
58	Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. Scientific Reports, 2017, 7, 1291.	1.6	100
59	High-throughput sequencing of African chikanda cake highlights conservation challenges in orchids. Biodiversity and Conservation, 2017, 26, 2029-2046.	1.2	26
60	Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Annals of Botany, 2017, 119, 1179-1193.	1.4	7
61	Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evolutionary Biology, 2017, 17, 89.	3.2	52
62	DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171182.	1.2	53
63	<scp>DNA</scp> barcoding of tuberous Orchidoideae: a resource for identification of orchids used in Salep. Molecular Ecology Resources, 2017, 17, 342-352.	2.2	31
64	Veronica officinalis Product Authentication Using DNA Metabarcoding and HPLC-MS Reveals Widespread Adulteration with Veronica chamaedrys. Frontiers in Pharmacology, 2017, 8, 378.	1.6	69
65	The typification of two Linnaean plant names based on illustrations published by Leonhard Rauwolf in 1583. Taxon, 2017, 66, 1204-1207.	0.4	5
66	Unidentifiable by morphology: DNA barcoding of plant material in local markets in Iran. PLoS ONE, 2017, 12, e0175722.	1.1	41
67	Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants. Diversity and Distributions, 2016, 22, 97-110.	1.9	19
68	Traditional use of medicinal plants among Kalasha, Ismaeli and Sunni groups in Chitral District, Khyber Pakhtunkhwa province, Pakistan. Journal of Ethnopharmacology, 2016, 188, 57-69.	2.0	328
69	Evaluation of DNA barcoding coupled high resolution melting for discrimination of closely related species in phytopharmaceuticals. Phytomedicine, 2016, 23, 156-165.	2.3	45
70	Harvesting of salep orchids in north-western Greece continues to threaten natural populations. Oryx, 2016, 50, 393-396.	0.5	40
71	Molecular phylogenetic analyses of Cucurbitaceae tribe Benincaseae urge for merging of Pilogyne with Zehneria. Phytotaxa, 2015, 236, 173.	0.1	10
72	Bar-HRM for Authentication of Plant-Based Medicines: Evaluation of Three Medicinal Products Derived from Acanthaceae Species. PLoS ONE, 2015, 10, e0128476.	1.1	71

HUGO J DE BOER

#	Article	IF	CITATIONS
73	Vernacular dominance in folk taxonomy: a case study of ethnospecies in medicinal plant trade in Tanzania. Journal of Ethnobiology and Ethnomedicine, 2015, 11, 10.	1.1	26
74	Sunda to Sahul dispersals in <i>Trichosanthes</i> (Cucurbitaceae): a dated phylogeny reveals five independent dispersal events to Australasia. Journal of Biogeography, 2015, 42, 519-531.	1.4	7
75	DNA Barcoding and Pharmacovigilance of Herbal Medicines. Drug Safety, 2015, 38, 611-620.	1.4	151
76	Traps as treats: a traditional sticky rice snack persisting in rapidly changing Asian kitchens. Journal of Ethnobiology and Ethnomedicine, 2015, 11, 24.	1.1	4
77	Indigenous knowledge of folk medicines among tribal minorities in Khyber Pakhtunkhwa, northwestern Pakistan. Journal of Ethnopharmacology, 2015, 166, 157-167.	2.0	48
78	Evolution of endemism on a young tropical mountain. Nature, 2015, 524, 347-350.	13.7	234
79	Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species. PLoS ONE, 2015, 10, e0138888.	1.1	33
80	Economic benefits of high value medicinal plants to Pakistani communities: an analysis of current practice and potential. Journal of Ethnobiology and Ethnomedicine, 2014, 10, 71.	1.1	74
81	DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy. PLoS ONE, 2014, 9, e84291.	1.1	46
82	Medicinal plants for women's healthcare in southeast Asia: A meta-analysis of their traditional use, chemical constituents, and pharmacology. Journal of Ethnopharmacology, 2014, 151, 747-767.	2.0	89
83	Volume, value and floristic diversity of Gabon׳s medicinal plant markets. Journal of Ethnopharmacology, 2014, 155, 1184-1193.	2.0	43
84	Wild orchid tuber collection in Iran: a wake-up call for conservation. Biodiversity and Conservation, 2014, 23, 2749-2760.	1.2	67
85	Medicinal plants used for menstrual disorders in Latin America, the Caribbean, sub-Saharan Africa, South and Southeast Asia and their uterine properties: A review. Journal of Ethnopharmacology, 2014, 155, 992-1000.	2.0	46
86	Dioecy is associated with higher diversification rates in flowering plants. Journal of Evolutionary Biology, 2014, 27, 1478-1490.	0.8	57
87	Collection and trade of wild-harvested orchids in Nepal. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 64.	1.1	111
88	Molecular Identification of Commercialized Medicinal Plants in Southern Morocco. PLoS ONE, 2012, 7, e39459.	1.1	115
89	Comparing medicinal plant knowledge using similarity indices: A case of the Brou, Saek and Kry in Lao PDR. Journal of Ethnopharmacology, 2012, 141, 481-500.	2.0	44
90	Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae). BMC Evolutionary Biology, 2012, 12, 108.	3.2	26

#	Article	IF	CITATIONS
91	Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data. PhytoKeys, 2012, 12, 23.	0.4	15
92	Species Substitution in Medicinal Roots and Possible Implications for Toxicity of Herbal Remedies in Morocco. Economic Botany, 2012, 66, 370-382.	0.8	43
93	Keeping leeches at bay: Field evaluation of plant-derived extracts against terrestrial blood-sucking leeches (Haemadipsidae) in Lao PDR. Acta Tropica, 2011, 119, 178-182.	0.9	11
94	Ethnobotany and trade of medicinal plants in the Qaysari Market, Kurdish Autonomous Region, Iraq. Journal of Ethnopharmacology, 2011, 133, 490-510.	2.0	121
95	Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery. BMC Complementary and Alternative Medicine, 2011, 11, 128.	3.7	28
96	Traditions and plant use during pregnancy, childbirth and postpartum recovery by the Kry ethnic group in Lao PDR. Journal of Ethnobiology and Ethnomedicine, 2011, 7, 14.	1.1	68
97	A Fly in the Ointment: Evaluation of Traditional Use of Plants to Repel and Kill Blowfly Larvae in Fermented Fish. PLoS ONE, 2011, 6, e29521.	1.1	3
98	Contemporary Knowledge of Dye Plant Species and Natural Dye Use in Kurdish Autonomous Region, Iraq. Economic Botany, 2010, 64, 137-148.	0.8	15
99	Botanical Repellents and Pesticides Traditionally Used Against Hematophagous Invertebrates in Lao People's Democratic Republic: A Comparative Study of Plants Used in 66 Villages. Journal of Medical Entomology, 2010, 47, 400-414.	0.9	30
100	Botanical Repellents and Pesticides Traditionally Used Against Hematophagous Invertebrates in Lao People's Democratic Republic: A Comparative Study of Plants Used in 66 Villages. Journal of Medical Entomology, 2010, 47, 400-414.	0.9	9
101	Plants used during pregnancy, childbirth and postpartum healthcare in Lao PDR: A comparative study of the Brou, Saek and Kry ethnic groups. Journal of Ethnobiology and Ethnomedicine, 2009, 5, 25.	1.1	51
102	Allergic Reactions to Medicines Derived from Pelargonium Species. Drug Safety, 2007, 30, 677-680.	1.4	26
103	Botanical Nomenclature in Pharmacovigilance and a Recommendation for Standardisation. Drug Safety, 2006, 29, 1023-1029.	1.4	39
104	Lectotypification of <i>Callicocca ipecacuanha</i> Brot. and neotypification of <i>Cephaelis acuminata</i> H.Karst., with reference to the drug ipecac. Taxon, 2005, 54, 1080-1082.	0.4	5
105	Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. Journal of Ethnopharmacology, 2005, 96, 461-469.	2.0	151
106	The mitochondrial plasmid pAL2-1 reduces calorie restriction mediated life span extension in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 2004, 41, 865-871.	0.9	28
107	PhytoAuthent: Molecular authentication of complex herbal food supplements for safety and efficacy. Research Ideas and Outcomes, 0, 3, e21710.	1.0	1
108	PhytoAuthent: Molecular authentication of complex herbal food supplements for safety and efficacy. Research Ideas and Outcomes, 0, 4, e26986.	1.0	6

#	Article	IF	CITATIONS
109	BioDATA: Biodiversity data mobilisation and data publication training in Eurasia. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
110	Molecular identification of the economically important Solanum subgenus Leptostemonum (Solanaceae) using DNA barcodes. Journal of Plant Biochemistry and Biotechnology, 0, , 1.	0.9	0
111	Target Capture Reveals the Complex Origin of Vietnamese Ginseng. Frontiers in Plant Science, 0, 13, .	1.7	5