
Daniel Marsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 2013, 94, 1339-1360.	1.7	1,848
2	Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). Journal of Climate, 2013, 26, 7372-7391.	1.2	706
3	Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 2007, 112, .	3.3	632
4	Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 2006, 111, .	3.3	414
5	Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	395
6	Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	308
7	Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 2017, 10, 2247-2302.	1.3	293
8	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
9	The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling. Journal of Climate, 2006, 19, 3903-3931.	1.2	247
10	Longâ€ŧerm ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5029-5060.	1.2	243
11	Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 2007, 112, .	3.3	230
12	Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCMâ€X 2.0). Journal of Advances in Modeling Earth Systems, 2018, 10, 381-402.	1.3	213
13	The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.	1.2	202
14	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
15	Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2016, 121, 2332-2348.	1.2	175
16	ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophysical Research Letters, 2009, 36, .	1.5	172
17	Numerical simulations of the threeâ€dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. Journal of Geophysical Research, 2008, 113, .	3.3	159
18	Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics, 2008, 8, 765-785.	1.9	156

#	Article	IF	CITATIONS
19	Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events. Journals of the Atmospheric Sciences, 2010, 67, 2331-2340.	0.6	152
20	Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmospheric Chemistry and Physics, 2011, 11, 9089-9139.	1.9	145
21	Thermosphere extension of the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2010, 115, .	3.3	144
22	Temporal variations of atomic oxygen in the upper mesosphere from SABER. Journal of Geophysical Research, 2010, 115, .	3.3	135
23	Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. Journal of Geophysical Research, 2008, 113, .	3.3	134
24	Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7979-7998.	1.2	131
25	WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. Journal of Geophysical Research, 2011, 116, .	3.3	123
26	Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890.	1.3	122
27	A global atmospheric model of meteoric iron. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9456-9474.	1.2	105
28	Longâ€ŧerm middle atmospheric influence of very large solar proton events. Journal of Geophysical Research, 2009, 114, .	3.3	103
29	The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 0, , 130204122247009.	1.7	103
30	Empirical model of nitric oxide in the lower thermosphere. Journal of Geophysical Research, 2004, 109,	3.3	93
31	Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 2010, 115, .	3.3	93
32	On the distribution of CO ₂ and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5700-5718.	1.2	90
33	SABER observations of the OH Meinel airglow variability near the mesopause. Journal of Geophysical Research, 2006, 111, .	3.3	88
34	WACCMâ€D—Whole Atmosphere Community Climate Model with Dâ€region ion chemistry. Journal of Advances in Modeling Earth Systems, 2016, 8, 954-975.	1.3	86
35	Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. Journal of Geophysical Research, 2008, 113, .	3.3	84
36	A global model of meteoric sodium. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,442.	1.2	84

#	Article	IF	CITATIONS
37	The existence of a tertiary ozone maximum in the high-latitude middle mesosphere. Geophysical Research Letters, 2001, 28, 4531-4534.	1.5	81
38	Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmospheric Chemistry and Physics, 2011, 11, 6153-6166.	1.9	71
39	Quantification of the SF ₆ lifetime based on mesospheric loss measured in the stratospheric polar vortex. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4626-4638.	1.2	71
40	The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	70
41	The Specified Chemistry Whole Atmosphere Community Climate Model (SCâ€WACCM). Journal of Advances in Modeling Earth Systems, 2014, 6, 883-901.	1.3	69
42	Processes that account for the ozone maximum at the mesopause. Journal of Geophysical Research, 2005, 110, .	3.3	61
43	Attribution of decadal variability in lowerâ€stratospheric tropical ozone. Geophysical Research Letters, 2007, 34, .	1.5	61
44	Whole Atmosphere Simulation of Anthropogenic Climate Change. Geophysical Research Letters, 2018, 45, 1567-1576.	1.5	60
45	Chemical–Dynamical Coupling in the Mesosphere and Lower Thermosphere. , 2011, , 3-17.		58
46	On the Dynamical Control of the Mesosphere–Lower Thermosphere by the Lower and Middle Atmosphere. Journals of the Atmospheric Sciences, 2017, 74, 933-947.	0.6	58
47	On the detection of the solar signal in the tropical stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 5251-5269.	1.9	57
48	Mesospheric ozone response to changes in water vapor. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	56
49	A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1234-1246.	1.2	56
50	HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmospheric Chemistry and Physics, 2017, 17, 3573-3604.	1.9	55
51	An Evaluation of the Large cale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032835.	1.2	55
52	Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter. Journal of Geophysical Research: Space Physics, 2015, 120, 5035-5048.	0.8	53
53	Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	51
54	Numerical simulations of the threeâ€dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations. Journal of Geophysical Research, 2010, 115, .	3.3	50

#	Article	IF	CITATIONS
55	First Results From the Ionospheric Extension of WACCMâ€X During the Deep Solar Minimum Year of 2008. Journal of Geophysical Research: Space Physics, 2018, 123, 1534-1553.	0.8	50
56	Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART. Journal of Geophysical Research: Space Physics, 2018, 123, 3131-3153.	0.8	50
57	Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. Atmospheric Chemistry and Physics, 2017, 17, 883-898.	1.9	49
58	Two-day wave structure and mean flow interactions observed by radar and High Resolution Doppler Imager. Journal of Geophysical Research, 1999, 104, 3953-3969.	3.3	47
59	High Resolution Doppler Imager observations of ozone in the mesosphere and lower thermosphere. Journal of Geophysical Research, 2002, 107, ACH 7-1.	3.3	46
60	Satellite observations of high nighttime ozone at the equatorial mesopause. Journal of Geophysical Research, 2008, 113, .	3.3	46
61	Inferring the global cosmic dust influx to the Earth's atmosphere from lidar observations of the vertical flux of mesospheric Na. Journal of Geophysical Research: Space Physics, 2014, 119, 7870-7879.	0.8	45
62	Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophysical Research Letters, 2012, 39, .	1.5	44
63	<title>Delay-line detectors for the UVCS and SUMER instruments on the SOHO Satellite</title> . , 1994, , ·		43
64	Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere. Geophysical Research Letters, 2014, 41, 4753-4760.	1.5	43
65	A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	42
66	The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,636.	1.2	42
67	Wintertime Northern Hemisphere Response in the Stratosphere to the Pacific Decadal Oscillation Using the Whole Atmosphere Community Climate Model. Journal of Climate, 2016, 29, 1031-1049.	1.2	42
68	Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3516-3526.	1.2	41
69	Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models. Atmospheric Chemistry and Physics, 2009, 9, 1165-1172.	1.9	40
70	Could a future "Grand Solar Minimum―like the Maunder Minimum stop global warming?. Geophysical Research Letters, 2013, 40, 1789-1793.	1.5	39
71	Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Mediumâ€Energy Electrons. Journal of Geophysical Research D: Atmospheres, 2018, 123, 607-622.	1.2	38
72	Wintertime water vapor in the polar upper mesosphere and lower thermosphere: First satellite observations by Odin submillimeter radiometer. Journal of Geophysical Research, 2009, 114, .	3.3	36

#	Article	IF	CITATIONS
73	Storm-time behaviors of O/N2 and NO variations. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 114, 42-49.	0.6	36
74	Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results. Atmospheric Chemistry and Physics, 2015, 15, 273-295.	1.9	36
75	A link between variability of the semidiurnal tide and planetary waves in the opposite hemisphere. Geophysical Research Letters, 2007, 34, .	1.5	35
76	The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	35
77	Whole Atmosphere Climate Change: Dependence on Solar Activity. Journal of Geophysical Research: Space Physics, 2019, 124, 3799-3809.	0.8	35
78	Interaction of chemical heating and the diurnal tide in the mesosphere. Journal of Geophysical Research, 2003, 108, .	3.3	33
79	Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2007, 112, .	3.3	33
80	Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM). Geophysical Research Letters, 2016, 43, 3928-3934.	1.5	33
81	WACCMâ€Đ—Improved modeling of nitric acid and active chlorine during energetic particle precipitation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,328.	1.2	32
82	The Response of the Ozone Layer to Quadrupled CO2 Concentrations. Journal of Climate, 2018, 31, 3893-3907.	1.2	32
83	Nitric Oxide Response to the April 2010 Electron Precipitation Event: Using WACCM and WACCMâ€D With and Without Mediumâ€Energy Electrons. Journal of Geophysical Research: Space Physics, 2018, 123, 5232-5245.	0.8	31
84	On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models. Atmospheric Chemistry and Physics, 2009, 9, 8889-8901.	1.9	30
85	The importance of timeâ€varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4435-4447.	1.2	30
86	A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations. Geophysical Research Letters, 2000, 27, 3197-3200.	1.5	29
87	Spatio-temporal observations of the tertiary ozone maximum. Atmospheric Chemistry and Physics, 2009, 9, 4439-4445.	1.9	29
88	Rocketâ€borne in situ measurements of meteor smoke: Charging properties and implications for seasonal variation. Journal of Geophysical Research, 2010, 115, .	3.3	29
89	Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophysical Research Letters, 2010, 37, .	1.5	29
90	The combined effects of ENSO and the 11 year solar cycle on the Northern Hemisphere polar stratosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29

#	Article	IF	CITATIONS
91	Effect of trends of middle atmosphere gases on the mesosphere and thermosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3846-3855.	0.8	29
92	Biases in southern hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophysical Research Letters, 2014, 41, 8602-8610.	1.5	29
93	"World avoided―simulations with the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	28
94	Mesospheric intrusion and anomalous chemistry during and after a major stratospheric sudden warming. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 78-79, 116-124.	0.6	28
95	Ozone perturbation from medium-size asteroid impacts in the ocean. Earth and Planetary Science Letters, 2010, 299, 263-272.	1.8	27
96	Agreement in late twentieth century Southern Hemisphere stratospheric temperature trends in observations and CCMValâ€⊋, CMIP3, and CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 605-613.	1.2	27
97	NO _{<i>x</i>} production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies. Journal of Geophysical Research: Space Physics, 2014, 119, 2137-2148.	0.8	26
98	Atmospheric changes caused by galactic cosmic rays over the period 1960–2010. Atmospheric Chemistry and Physics, 2016, 16, 5853-5866.	1.9	26
99	Seasonal variations of the mesospheric Fe layer at Rothera, Antarctica (67.5°S, 68.0°W). Journal of Geophysical Research, 2011, 116, .	3.3	25
100	Atomic Oxygen Retrieved From the SABER 2.0―and 1.6â€Ì¼m Radiances Using New Firstâ€Principles Nighttime OH(<i>v</i>) Model. Geophysical Research Letters, 2018, 45, 5798-5803.	2 1.5	25
101	Atmospheric Effects of >30â€keV Energetic Electron Precipitation in the Southern Hemisphere Winter During 2003. Journal of Geophysical Research: Space Physics, 2019, 124, 8138-8153.	0.8	24
102	Interhemispheric transport of metallic ions within ionospheric sporadic <i>E</i> layers by the lower thermospheric meridional circulation. Atmospheric Chemistry and Physics, 2021, 21, 4219-4230.	1.9	24
103	Momentum balance and gravity wave forcing in the mesosphere and lower thermosphere. Geophysical Research Letters, 2009, 36, .	1.5	22
104	Observations and Modeling of Increased Nitric Oxide in the Antarctic Polar Middle Atmosphere Associated With Geomagnetic Stormâ€Driven Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2018, 123, 6009-6025.	0.8	22
105	Global climate disruption and regional climate shelters after the Toba supereruption. Proceedings of the United States of America, 2021, 118, .	3.3	21
106	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
107	On the secular trend of CO x and CO 2 in the lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3634-3644.	1.2	20
108	Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar mesospheric clouds?. Geophysical Research Letters, 2008, 35, .	1.5	19

#	Article	IF	CITATIONS
109	The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models. Journals of the Atmospheric Sciences, 2011, 68, 495-514.	0.6	19
110	Impact of January 2005 solar proton events on chlorine species. Atmospheric Chemistry and Physics, 2012, 12, 4159-4179.	1.9	19
111	Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 1006-1017.	0.8	19
112	Effects of the September 2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM. Journal of Geophysical Research: Space Physics, 2018, 123, 5747-5763.	0.8	19
113	Simulation of the 21 August 2017 Solar Eclipse Using the Whole Atmosphere Community Climate Modelâ€eXtended. Geophysical Research Letters, 2018, 45, 3793-3800.	1.5	18
114	The representation of solar cycle signals in stratospheric ozone – PartÂ2: Analysis of global models. Atmospheric Chemistry and Physics, 2018, 18, 11323-11343.	1.9	18
115	Reconciling modeled and observed temperature trends over Antarctica. Geophysical Research Letters, 2012, 39, .	1.5	17
116	Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models. Atmospheric Chemistry and Physics, 2018, 18, 9075-9089.	1.9	17
117	The Response of the Ozone Layer to Quadrupled CO2 Concentrations: Implications for Climate. Journal of Climate, 2019, 32, 7629-7642.	1.2	17
118	Solar cycle dependence of middle atmosphere temperatures. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9615-9625.	1.2	16
119	<i>D</i> -region ion–neutral coupled chemistry (Sodankyläon Chemistry,) Tj ET WACCM-rSIC. Geoscientific Model Development, 2016, 9, 3123-3136.	Qq1 1 0.7 1.3	84314 rgB ⁻ 16
120	Impacts of a sudden stratospheric warming on the mesospheric metal layers. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 162-171.	0.6	16
121	Future Directions for Whole Atmosphere Modeling: Developments in the Context of Space Weather. Space Weather, 2019, 17, 1342-1350.	1.3	16
122	The Role of the Middle Atmosphere in Simulations of the Troposphere during Northern Hemisphere Winter: Differences between High- and Low-Top Models. Journals of the Atmospheric Sciences, 2010, 67, 3048-3064.	0.6	15
123	Solar cycle response and longâ€ŧerm trends in the mesospheric metal layers. Journal of Geophysical Research: Space Physics, 2016, 121, 7153-7165.	0.8	15
124	Atmospheric Tides in the Latest Generation of Climate Models*. Journals of the Atmospheric Sciences, 2014, 71, 1905-1913.	0.6	14
125	Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO. Atmospheric Chemistry and Physics, 2014, 14, 4843-4856.	1.9	14
126	Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4. Journal of Advances in Modeling Earth Systems, 2015, 7, 806-822.	1.3	14

#	Article	IF	CITATIONS
127	Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry Using FIREBIRD II and Van Allen Probes Observations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033098.	1.2	14
128	Mesospheric temperatures and sodium properties measured with the ALOMAR Na lidar compared with WACCM. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 111-119.	0.6	13
129	The Upper Stratospheric Solar Cycle Ozone Response. Geophysical Research Letters, 2019, 46, 1831-1841.	1.5	13
130	Solar Cycle Variability of Nonmigrating Tides in the 5.3 and 15Â <i>μ</i> m Infrared Cooling of the Thermosphere (100–150Âkm) from SABER. Journal of Geophysical Research: Space Physics, 2019, 124, 2338-2356.	0.8	13
131	IMK/IAA MIPAS temperature retrieval version 8: nominal measurements. Atmospheric Measurement Techniques, 2021, 14, 4111-4138.	1.2	13
132	Role Of the Sun and the Middle atmosphere/thermosphere/ionosphere In Climate (ROSMIC): a retrospective and prospective view. Progress in Earth and Planetary Science, 2021, 8, .	1.1	13
133	A revised lower estimate of ozone columns during Earth's oxygenated history. Royal Society Open Science, 2022, 9, 211165.	1.1	13
134	Tidal influences on O2atmospheric band dayglow: HRDI observations vs. model simulations. Geophysical Research Letters, 1999, 26, 1369-1372.	1.5	12
135	TIME-GCM simulations of lower-thermospheric nitric oxide seen by the halogen occultation experiment. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 889-895.	0.6	12
136	Comparison of global datasets of sodium densities in the mesosphere and lower thermosphere from GOMOS, SCIAMACHY and OSIRIS measurements and WACCM model simulations from 2008 to 2012. Atmospheric Measurement Techniques, 2017, 10, 2989-3006.	1.2	12
137	Mesospheric Nitric Acid Enhancements During Energetic Electron Precipitation Events Simulated by WACCMâ€Ð. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6984-6998.	1.2	12
138	Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117À°â€‰E). Atmospheric Chemistry and Physics, 2018, 18, 11683	-1 1 895.	12
139	Response of the mesosphere-thermosphere-ionosphere system to global change - CAWSES-II contribution. Progress in Earth and Planetary Science, 2014, 1, .	1.1	11
140	Relative Importance of Nitric Oxide Physical Drivers in the Lower Thermosphere. Geophysical Research Letters, 2017, 44, 10,081.	1.5	11
141	On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric nitric oxide. Annales Geophysicae, 2019, 37, 37-48.	0.6	11
142	Termination of Solar Cycles and Correlated Tropospheric Variability. Earth and Space Science, 2021, 8, e2020EA001223.	1.1	11
143	Self-consistent global transport of metallic ions with WACCM-X. Atmospheric Chemistry and Physics, 2021, 21, 15619-15630.	1.9	11
144	Predictability of variable solar–terrestrial coupling. Annales Geophysicae, 2021, 39, 1013-1035.	0.6	11

#	Article	IF	CITATIONS
145	Diurnal variation of the potassium layer in the upper atmosphere. Geophysical Research Letters, 2015, 42, 3619-3626.	1.5	10
146	Longâ€Term Variability and Tendencies in Middle Atmosphere Temperature and Zonal Wind From WACCM6 Simulations During 1850–2014. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033579.	1.2	10
147	Will Climate Change Impact Polar NO x Produced by Energetic Particle Precipitation?. Geophysical Research Letters, 2020, 47, e2020GL087041.	1.5	9
148	Effects of enhanced downwelling of NO _x on Antarctic upper-stratospheric ozone in the 21stÂcentury. Atmospheric Chemistry and Physics, 2021, 21, 11041-11052.	1.9	9
149	Middle atmosphere summer duration as an indicator of long-term circulation changes. Advances in Space Research, 2005, 35, 1416-1422.	1.2	8
150	Understanding the Effects of Polar Mesospheric Clouds on the Environment of the Upper Mesosphere and Lower Thermosphere. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,705.	1.2	8
151	Photochemistry on the bottom side of the mesospheric Na layer. Atmospheric Chemistry and Physics, 2019, 19, 3769-3777.	1.9	8
152	<title>Progress on high-efficiency photocathodes for soft x-ray, EUV, and FUV photon
detection</title> . , 1993, , .		7
153	Error growth in the Mesosphere and Lower Thermosphere Based on Hindcast Experiments in a Whole Atmosphere Model. Space Weather, 2019, 17, 1442-1460.	1.3	7
154	The 27â€Ðay Solar Rotational Cycle Response in the Mesospheric Metal Layers at Low Latitudes. Geophysical Research Letters, 2019, 46, 7199-7206.	1.5	6
155	WACCM simulations: Decadal winter-to-spring climate impact on middle atmosphere and troposphere from medium energy electron precipitation. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 209, 105382.	0.6	6
156	The response of mesospheric H ₂ O and CO to solar irradiance variability in models and observations. Atmospheric Chemistry and Physics, 2021, 21, 201-216.	1.9	6
157	Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry. Atmospheric Chemistry and Physics, 2020, 20, 8923-8938.	1.9	6
158	Longâ€Term Variability and Tendencies in Migrating Diurnal Tide From WACCM6 Simulations During 1850–2014. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033644.	1.2	5
159	Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multiâ€Decadal Variability. Geophysical Research Letters, 2021, 48, e2020GL092162.	1.5	5
160	SABER Observations of Daytime Atomic Oxygen and Ozone Variability in the Mesosphere. , 2011, , 75-82.		5
161	Magnetic-local-time dependency of radiation belt electron precipitation: impact on ozone in the polar middle atmosphere. Annales Geophysicae, 2020, 38, 833-844.	0.6	5
162	Impact of the January 2012 solar proton event on polar mesospheric clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9165-9173.	1.2	4

#	Article	IF	CITATIONS
163	Simultaneous Retrievals of Nighttime O(³ P) and Total OH Densities From Satellite Observations of Meinel Band Emissions. Geophysical Research Letters, 2021, 48, .	1.5	4
164	Impacts of Lower Thermospheric Atomic Oxygen on Thermospheric Dynamics and Composition Using the Global Ionosphere Thermosphere Model. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027877.	0.8	3
165	Spatial Distributions of Nitric Oxide in the Antarctic Wintertime Middle Atmosphere During Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027846.	0.8	3
166	Mesospheric Nitric Oxide Transport in WACCM. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
167	<title>Characteristics of square-pore and low-noise microchannel-plate stacks</title> . , 1992, , .		2
168	Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide inÂ2002–2011: SD-WACCM simulations compared to GOMOS observations. Atmospheric Chemistry and Physics, 2018, 18, 5001-5019.	1.9	2
169	The Atmospheric Coupling and Dynamics Across the Mesopause (ACaDAMe) mission. Advances in Space Research, 2019, 64, 1915-1925.	1.2	2
170	Investigating Climate Change from the Stratosphere to Space. Eos, 2015, 96, .	0.1	1