Nevio Picci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131431/publications.pdf

Version: 2024-02-01

158 papers	7,712 citations	43973 48 h-index	80 g-index
165	165	165	9508
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antioxidant Polymers for Food Packaging. , 2018, , 213-238.		3
2	Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. European Polymer Journal, 2017, 90, 1-12.	2.6	44
3	Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. International Journal of Pharmaceutics, 2017, 517, 168-174.	2.6	41
4	Liquid crystalline microspheres for 5-fluorouracil specific release. Journal of Drug Delivery Science and Technology, 2017, 41, 482-487.	1.4	4
5	Hemostatic gauze based on chitosan and hydroquinone: preparation, characterization and blood coagulation evaluation. Journal of Materials Science: Materials in Medicine, 2017, 28, 190.	1.7	18
6	LC with Evaporative Light-Scattering Detection for Quantitative Analysis of Organic Acids in Juices. Food Analytical Methods, 2017, 10, 704-712.	1.3	6
7	Polyphenol Conjugates and Human Health: A Perspective Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 326-337.	5.4	95
8	Extraction Efficiency of Different Solvents and LC-UV Determination of Biogenic Amines in Tea Leaves and Infusions. Journal of Analytical Methods in Chemistry, 2016, 2016, 1-10.	0.7	15
9	Biogenic Amines as Quality Marker in Organic and Fair-Trade Cocoa-Based Products. Sustainability, 2016, 8, 856.	1.6	9
10	Novel microspheres based on triterpene saponins from the roots of <i>Physospermum verticillatum</i> (Waldst & Durnal of Pharmacy and Pharmacology, 2016, 68, 275-281.	1.2	6
11	Spontaneous temperature-sensitive Pluronic \hat{A}^{\otimes} based niosomes: Triggered drug release using mild hyperthermia. International Journal of Pharmaceutics, 2016, 511, 703-708.	2.6	21
12	Influence of packaging conditions on biogenic amines and fatty acids evolution during 15 months storage of a typical spreadable salami (\hat{a} Nduja). Food Chemistry, 2016, 213, 115-122.	4.2	15
13	Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir, 2016, 32, 8926-8933.	1.6	29
14	Dual Stimuli Responsive Gelatinâ€CNT Hybrid Films as a Versatile Tool for the Delivery of Anionic Drugs. Macromolecular Materials and Engineering, 2016, 301, 1537-1547.	1.7	6
15	Functional hydrogels with a multicatalytic activity for bioremediation: Singleâ€step preparation and characterization. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
16	Application of LC with Evaporative Light Scattering Detector for Biogenic Amines Determination in Fair Trade Cocoa-Based Products. Food Analytical Methods, 2016, 9, 2200-2209.	1.3	8
17	Cotton gauze-hydrogel composites: Valuable tools for electrically modulated drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 442-450.	1.8	7
18	Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation. Colloids and Surfaces B: Biointerfaces, 2016, 139, 132-137.	2.5	15

#	Article	IF	CITATIONS
19	Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Delivery, 2016, 23, 1037-1046.	2.5	44
20	Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels. Pharmaceutics, 2015, 7, 413-437.	2.0	28
21	On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances, 2015, 5, 44902-44911.	1.7	31
22	Tailoring Flavonoids' Antioxidant Properties Through Covalent Immobilization Into Dual Stimuli Responsive Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 587-596.	1.8	4
23	Determination of biogenic amine profiles in conventional and organic cocoa-based products. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1156-1163.	1.1	15
24	Functional Gelatin-Carbon Nanotubes Nanohybrids With Enhanced Antibacterial Activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 439-447.	1.8	17
25	Evaluation of fatty acids and biogenic amines profiles in mullet and tuna roe during six months of storage at 4°C. Journal of Food Composition and Analysis, 2015, 40, 52-60.	1.9	27
26	Coated biodegradable casein nanospheres: a valuable tool for oral drug delivery. Drug Development and Industrial Pharmacy, 2015, 41, 2006-2017.	0.9	6
27	Novel pH sensitive ferrogels as new approach in cancer treatment: Effect of the magnetic field on swelling and drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 134, 273-278.	2.5	23
28	Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. European Polymer Journal, 2015, 67, 304-313.	2.6	11
29	Flavonoid-based pH-responsive hydrogels as carrier of unstable drugs in oxidative conditions. Pharmaceutical Development and Technology, 2015, 20, 288-296.	1.1	6
30	Photostability and ex-vivo permeation studies on diclofenac in topical niosomal formulations. International Journal of Pharmaceutics, 2015, 494, 490-497.	2.6	51
31	Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Materials Science and Engineering C, 2015, 48, 499-510.	3.8	42
32	Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chemistry, 2015, 175, 143-150.	4.2	45
33	Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomedical Microdevices, 2014, 16, 851-858.	1.4	28
34	Antioxidative Effectiveness of Environment Friendly Functional Biopolymers for Food Applications. , 2014, , 65-74.		1
35	Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review. BioMed Research International, 2014, 2014, 1-17.	0.9	123
36	Synthesis, characterization and antimicrobial activity of conjugates based on fluoroquinolon-type antibiotics and gelatin. Journal of Materials Science: Materials in Medicine, 2014, 25, 67-77.	1.7	7

#	Article	IF	CITATIONS
37	Polyphenols and Their Formulations. , 2014, , 29-45.		33
38	Tubeless biochip for chemical stimulation of cells in closed-bioreactors: anti-cancer activity of the catechinâ€"dextran conjugate. RSC Advances, 2014, 4, 35017-35026.	1.7	3
39	Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt. Colloids and Surfaces B: Biointerfaces, 2014, 123, 207-212.	2.5	17
40	Enzyme immobilization on smart polymers: Catalysis on demand. Reactive and Functional Polymers, 2014, 83, 62-69.	2.0	70
41	Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. Journal of Materials Chemistry B, 2014, 2, 6619-6625.	2.9	73
42	Novel functional cisplatin carrier based on carbon nanotubes–quercetin nanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Advances, 2014, 4, 31378.	1.7	20
43	Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 2014, 114, 82-88.	2.5	121
44	Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloids and Surfaces B: Biointerfaces, 2014, 114, 144-149.	2.5	88
45	Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids and Surfaces B: Biointerfaces, 2014, 118, 7-13.	2.5	49
46	Recent Development in the Synthesis of Eco-Friendly Polymeric Antioxidants. Current Organic Chemistry, 2014, 18, 2912-2927.	0.9	15
47	Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). Pharmaceutical Development and Technology, 2013, 18, 1058-1065.	1.1	10
48	Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids and Surfaces B: Biointerfaces, 2013, 109, 273-279.	2.5	93
49	Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drugâ€delivery systems. Journal of Applied Polymer Science, 2013, 130, 829-834.	1.3	21
50	Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. International Journal of Pharmaceutics, 2013, 448, 115-122.	2.6	80
51	Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis. Journal of Pharmacy and Pharmacology, 2013, 65, 1302-1311.	1.2	44
52	Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release. Pharmaceutical Development and Technology, 2013, 18, 1026-1034.	1.1	9
53	Transferrin-Conjugated Pluronic Niosomes as a New Drug Delivery System for Anticancer Therapy. Langmuir, 2013, 29, 12638-12646.	1.6	103
54	Stabilization of oxidable vitamins by flavonoid-based hydrogels. Reactive and Functional Polymers, 2013, 73, 1030-1037.	2.0	9

#	Article	IF	CITATIONS
55	Technological aspects and analytical determination of biogenic amines in cheese. Trends in Food Science and Technology, 2013, 30, 38-55.	7.8	79
56	Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system. Colloid and Polymer Science, 2013, 291, 699-708.	1.0	19
57	Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	46
58	Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. European Journal of Pharmaceutical Sciences, 2013, 49, 359-365.	1.9	42
59	Incorporation of carbon nanotubes into a gelatin–catechin conjugate: Innovative approach for the preparation of anticancer materials. International Journal of Pharmaceutics, 2013, 446, 176-182.	2.6	54
60	Determination of biogenic amines in different cheese samples by LC with evaporative light scattering detector. Journal of Food Composition and Analysis, 2013, 29, 43-51.	1.9	53
61	Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 2013, 20, 547-557.	2.4	35
62	Preparation, Characterization and Efficacy Evaluation of Synthetic Biocompatible Polymers Linking Natural Antioxidants. Molecules, 2012, 17, 12734-12745.	1.7	8
63	Quercetin-Imprinted Nanospheres as Novel Drug Delivery Devices. Journal of Functional Biomaterials, 2012, 3, 269-282.	1.8	31
64	Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharmaceutical Development and Technology, 2012, 17, 466-476.	1.1	52
65	Dextran-Catechin Conjugate: A Potential Treatment Against the Pancreatic Ductal Adenocarcinoma. Pharmaceutical Research, 2012, 29, 2601-2614.	1.7	78
66	Collagen \hat{l}_{\pm} -tocopherulate for topical applications: Preparation, characterization, and antioxidant activity evaluation. Macromolecular Research, 2012, 20, 939-943.	1.0	5
67	Selective extraction and purification of gallic acid from actual site olive mill wastewaters by means of molecularly imprinted microparticles. Chemical Engineering Journal, 2012, 198-199, 529-535.	6.6	35
68	Ciprofloxacin-Collagen Conjugate in the Wound Healing Treatment. Journal of Functional Biomaterials, 2012, 3, 361-371.	1.8	17
69	Carbon Nanotubes – Imprinted Polymers: Hybrid Materials for Analytical Applications. , 2012, , .		2
70	Determination of Phospholipids in Food Samples. Food Reviews International, 2012, 28, 1-46.	4.3	41
71	Preparation, characterization and in vitro activities evaluation of curcumin based microspheres for azathioprine oral delivery. Reactive and Functional Polymers, 2012, 72, 446-450.	2.0	19
72	Synthesis, characterization and in-vitro antitubercular activity of isoniazid-gelatin conjugate. Journal of Pharmacy and Pharmacology, 2012, 64, 712-718.	1.2	13

#	Article	IF	Citations
73	Respirable rifampicinâ€based microspheres containing isoniazid for tuberculosis treatment. Journal of Biomedical Materials Research - Part A, 2012, 100A, 536-542.	2.1	15
74	Anticancer activity of a quercetin-based polymer towards HeLa cancer cells. Anticancer Research, 2012, 32, 2843-7.	0.5	32
75	Synthesis of Stimuli-Responsive Microgels for In Vitro Release of Diclofenac Diethyl Ammonium. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 823-844.	1.9	18
76	Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opinion on Drug Delivery, 2011, 8, 1379-1393.	2.4	130
77	A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 28-35.	2.0	119
78	A new method for the determination of biogenic amines in cheese by LC with evaporative light scattering detector. Talanta, 2011, 85, 363-369.	2.9	47
79	Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. Journal of Pharmacy and Pharmacology, 2011, 63, 179-188.	1.2	71
80	Poly(2-hydroxyethyl methacrylate)-quercetin Conjugate as Biomaterial in Ophthalmology: An "ab initio―Study. Journal of Functional Biomaterials, 2011, 2, 1-17.	1.8	16
81	Synthesis of pro-prodrugs l-lysine based for 5-aminosalicylic acid and 6-mercaptopurine colon specific release. International Journal of Pharmaceutics, 2011, 420, 290-296.	2.6	11
82	Polymeric membranes with antioxidant activity based on cellulose esters and poly(vinylidene) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 382
83	Synthesis of hydrophilic microspheres with LCST close to body temperature for controlled dualâ€sensitive drug release. Polymers for Advanced Technologies, 2011, 22, 1705-1712.	1.6	17
84	Thermoâ€responsive albumin hydrogels with LCST near the physiological temperature. Journal of Applied Polymer Science, 2011, 121, 342-351.	1.3	11
85	Molecularly imprinted polymers for the selective extraction of glycyrrhizic acid from liquorice roots. Food Chemistry, 2011, 125, 1058-1063.	4.2	90
86	Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydrate Polymers, 2011, 84, 517-523.	5.1	72
87	Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF- \hat{I}^{g} B nuclear binding and increase in PPAR \hat{I}^{g} expression. Journal of Nutritional Biochemistry, 2011, 22, 259-268.	1.9	100
88	Antioxidant Activity of a Mediterranean Food Product: "Fig Syrup― Nutrients, 2011, 3, 317-329.	1.7	21
89	L-Lysine Pro-Prodrug Containing trans-Ferulic Acid for 5-Amino Salicylic Acid Colon Delivery: Synthesis, Characterization and in Vitro Antioxidant Activity Evaluation. Chemical and Pharmaceutical Bulletin, 2010, 58, 103-105.	0.6	31
90	Negative Thermo-responsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech, 2010, 11, 652-662.	1.5	27

#	Article	IF	Citations
91	Iron (III) chelation and antioxidant properties of myo-inositol phosphorylated polymeric microspheresâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 597-601.	1.2	14
92	Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. Journal of Pharmacy and Pharmacology, 2010, 62, 577-582.	1.2	45
93	Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydrate Polymers, 2010, 79, 333-340.	5.1	123
94	New sucrose cocoate based vesicles: Preparation characterization and skin permeation studies. Colloids and Surfaces B: Biointerfaces, 2010, 75, 319-322.	2.5	29
95	Effect of formulations variables on the in vitro percutaneous permeation of Sodium Diclofenac from new vesicular systems obtained from Pluronic triblock copolymers. Colloids and Surfaces B: Biointerfaces, 2010, 79, 227-234.	2.5	38
96	Molecular imprinting polymerization by Fenton reaction. Colloid and Polymer Science, 2010, 288, 689-693.	1.0	12
97	Surface modifications of molecularly imprinted polymers for improved template recognition in water media. Journal of Polymer Research, 2010, 17, 355-362.	1.2	43
98	Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. Journal of Applied Polymer Science, 2010, 115, 784-789.	1.3	37
99	Antioxidant and spectroscopic studies of crosslinked polymers synthesized by grafting polymerization of ferulic acid. Polymers for Advanced Technologies, 2010, 21, 774-779.	1.6	18
100	Liquid crystalline Pluronic 105 pharmacogels as drug delivery systems: preparation, characterization, andin vitrotransdermal release. Journal of Drug Targeting, 2010, 18, 404-411.	2.1	17
101	Synthesis, Characterization, and Anti-Inflammatory Activity of Diclofenac-Bound Cotton Fibers. Biomacromolecules, 2010, 11, 1716-1720.	2.6	23
102	Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 48-55.	2.0	78
103	New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 2010, 21, 1425-1435.	2.8	379
104	Colon-specific devices based on methacrylic functionalized Tween monomer networks: Swelling studies and in vitro drug release. European Polymer Journal, 2010, 46, 209-216.	2.6	16
105	Selective Determination of Melamine in Aqueous Medium by Molecularly Imprinted Solid Phase Extraction. Journal of Agricultural and Food Chemistry, 2010, 58, 11883-11887.	2.4	43
106	Gastro-intestinal sustained release of phytic acid by molecularly imprinted microparticles. Pharmaceutical Development and Technology, 2010, 15, 526-531.	1.1	13
107	Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid and Polymer Science, 2009, 287, 779-787.	1.0	35
108	Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomedical Microdevices, 2009, 11, 1115-1125.	1.4	89

#	Article	IF	CITATIONS
109	Synthesis and antibacterial activity evaluation of a novel cotton fiber (Gossypium barbadense) ampicillin derivative. Carbohydrate Polymers, 2009, 78, 639-641.	5.1	20
110	New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. European Polymer Journal, 2009, 45, 1634-1640.	2.6	115
111	Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of \hat{l}^2 -carotene and \hat{l} ±-tocopherol. Colloids and Surfaces B: Biointerfaces, 2009, 72, 181-187.	2.5	94
112	Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohydrate Polymers, 2009, 75, 184-188.	5.1	62
113	A novel dextran hydrogel linking trans-ferulic acid for the stabilization and transdermal delivery of vitamin E. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 232-238.	2.0	56
114	Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Letters, 2009, 283, 108-117.	3.2	179
115	Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. Journal of Drug Targeting, 2009, 17, 72-77.	2.1	85
116	Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules, 2009, 10, 1923-1930.	2.6	185
117	Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. Journal of Agricultural and Food Chemistry, 2009, 57, 5933-5938.	2.4	328
118	Synthesis and Properties of Methacrylic-Functionalized Tween Monomer Networks. Langmuir, 2009, 25, 1800-1806.	1.6	10
119	Characterization of the S-denitrosylating activity of bilirubin. Journal of Cellular and Molecular Medicine, 2009, 13, 2365-2375.	1.6	41
120	The protective role of carotenoids against 7-keto-cholesterol formation in solution. Molecular and Cellular Biochemistry, 2008, 309, 61-68.	1.4	41
121	Synthesized esters of ferulic acid induce release of cytochrome c from rat testes mitochondria. Journal of Bioenergetics and Biomembranes, 2008, 40, 19-26.	1.0	21
122	Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 1172-1183.	2.2	70
123	Design and Synthesis of Cellulose Derivatives with Antioxidant Activity. Macromolecular Bioscience, 2008, 8, 86-95.	2.1	46
124	Niosomes from \hat{l}_{\pm} , $$	2.5	28
125	Removal of metal ions from aqueous solution by chelating polymeric microspheres bearing phytic acid derivatives. European Polymer Journal, 2008, 44, 1183-1190.	2.6	51
126	Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products. Food Chemistry, 2008, 106, 836-842.	4.2	91

#	Article	IF	Citations
127	Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. International Journal of Pharmaceutics, 2008, 353, 233-242.	2.6	167
128	Molecularly Imprinted Polymers for α-Tocopherol Delivery. Drug Delivery, 2008, 15, 253-258.	2.5	39
129	Synthesis of Methacrylicâ^Ferulic Acid Copolymer with Antioxidant Properties by Single-Step Free Radical Polymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 10646-10650.	2.4	48
130	New ferroelectric liquid crystals for highâ€performance optical devices. Liquid Crystals, 2008, 35, 625-632.	0.9	5
131	Stimuli-Responsive Molecularly Imprinted Polymers for Drug Delivery: A Review. Current Drug Delivery, 2008, 5, 85-96.	0.8	112
132	The sensitivity to Â-carotene growth-inhibitory and proapoptotic effects is regulated by caveolin-1 expression in human colon and prostate cancer cells. Carcinogenesis, 2008, 29, 2153-2161.	1.3	31
133	Polymer in Agriculture: a Review. American Journal of Agricultural and Biological Science, 2008, 3, 299-314.	0.9	224
134	Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids. Molecules, 2007, 12, 805-814.	1.7	66
135	Silica-Based Mesoporous Materials as Drug Delivery System for Methotrexate Release. Drug Delivery, 2007, 14, 491-495.	2.5	63
136	New Broom Fiber (Spartium junceum L.) Derivatives: Preparation and Characterization. Journal of Agricultural and Food Chemistry, 2007, 55, 9489-9495.	2.4	21
137	A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation. Colloids and Surfaces B: Biointerfaces, 2007, 58, 197-202.	2.5	56
138	Molecularly imprinted solid phase extraction for the selective HPLC determination of \hat{l} ±-tocopherol in bay leaves. Analytica Chimica Acta, 2007, 593, 164-170.	2.6	105
139	In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomedical Microdevices, 2007, 9, 421-433.	1.4	81
140	An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion. Journal of Membrane Science, 2007, 295, 95-101.	4.1	43
141	Solubilization and stabilization of \hat{l}^2 -carotene in niosomes: delivery to cultured cells. Chemistry and Physics of Lipids, 2006, 139, 32-42.	1.5	78
142	pH-Sensitive hydrogels based on bovine serum albumin for oral drug delivery. International Journal of Pharmaceutics, 2006, 312, 151-157.	2.6	85
143	Molecularly imprinted solid phase extraction for detection of sudan I in food matrices. Food Chemistry, 2005, 93, 349-353.	4.2	161
144	Preparation and characterization of bolaform surfactant vesicles. Colloids and Surfaces B: Biointerfaces, 2005, 46, 78-83.	2.5	41

#	Article	IF	CITATIONS
145	Synthesis and Antioxidant Efficiency of a New Copolymer Containing Phosphorylated Myo-Inositol. Macromolecular Bioscience, 2005, 5, 1049-1056.	2.1	14
146	Alkylamino Derivatives of 4-Aminomethylpyridine as Inhibitors of Copper-Containing Amine Oxidases. Journal of Medicinal Chemistry, 2005, 48, 664-670.	2.9	16
147	Spherical hydrophilic microparticles obtained by the radical copolymerisation of functionalised bovine serum albumin. Colloid and Polymer Science, 2004, 283, 250-256.	1.0	30
148	Spherical Molecularly Imprinted Polymers (SMIPs) via a Novel Precipitation Polymerization in the Controlled Delivery of Sulfasalazine. Macromolecular Bioscience, 2004, 4, 22-26.	2.1	99
149	Drug release from \hat{l}_{\pm},\hat{l}^2 -poly(N-2-hydroxyethyl)-dl-aspartamide-based microparticles. Biomaterials, 2004, 25, 4333-4343.	5.7	33
150	Monomers containing substrate or inhibitor residues for copper amine oxidases and their hydrophilic beaded resins designed for enzyme interaction studies. Tetrahedron, 2004, 60, 11407-11414.	1.0	20
151	Copper(II) Removal from Wastewaters by a New Synthesized Selective Extractant and SLM viability. Industrial & Description of the second	1.8	43
152	Antioxidant Effect of Ferulic Acid in Isolated Membranes and Intact Cells: Synergistic Interactions with α-Tocopherol, β-Carotene, and Ascorbic Acid. Journal of Agricultural and Food Chemistry, 2004, 52, 2411-2420.	2.4	148
153	Anisometric, non-mesogenic, tailor-made monomer for reverse-mode shutters. Liquid Crystals, 2002, 29, 295-300.	0.9	9
154	Unexpected behavior of the methoxymethoxy group in the metalation/formylation reactions of 3-methoxymethoxyanisole. Tetrahedron Letters, 2001, 42, 1351-1354.	0.7	14
155	Synthesis of Pluriaminated Pyridines. Heterocycles, 1998, 48, 1203.	0.4	6
156	Convenient Access to 3,4,5-Trisubstituted Pyridines. Heterocycles, 1996, 43, 1893.	0.4	6
157	C-alkylation of nitriles: a useful route to 2-ethoxyalkyl derivatives of cadaverine planned for enzyme study. Tetrahedron, 1993, 49, 8423-8432.	1.0	3
158	Molecularly Imprinted Polymers (PIMs) in Biomedical Applications. , 0, , .		12