
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes. Journal of Physical Chemistry B, 2021, 125, 1207-1213.	2.6	2
2	Optical Characterization of Sodium Fluorescein In Vitro and Ex Vivo. Frontiers in Oncology, 2021, 11, 654300.	2.8	3
3	Communication of Bichromophore Emission upon Aggregation – Aroylâ€∢i>S,Nâ€ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry - A European Journal, 2021, 27, 13426-13434.	3.3	10
4	Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch. Chemistry - A European Journal, 2020, 26, 17361-17365.	3.3	14
5	Lifetime encoding in flow cytometry for bead-based sensing of biomolecular interaction. Scientific Reports, 2020, 10, 19477.	3.3	11
6	Substitution pattern controlled aggregation-induced emission in donor–acceptor–donor dyes with one and two propeller-like triphenylamine donors. Physical Chemistry Chemical Physics, 2020, 22, 14142-14154.	2.8	10
7	One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer. Chemical Communications, 2020, 56, 7407-7410.	4.1	21
8	Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry. Analytical and Bioanalytical Chemistry, 2020, 412, 6499-6507.	3.7	6
9	Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Scientific Reports, 2020, 10, 653.	3.3	14
10	Solidâ€State Emissive Aroylâ€ <i>S</i> , <i>N</i> â€Ketene Acetals with Tunable Aggregationâ€Induced Emission Characteristics. Angewandte Chemie - International Edition, 2020, 59, 10037-10041.	13.8	39
11	Festkörperemittierende Aroyl―S , N â€Ketenacetale mit steuerbaren aggregationsinduzierten Emissionseigenschaften. Angewandte Chemie, 2020, 132, 10123-10127.	2.0	6
12	Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles. ChemPhotoChem, 2020, 4, 668-673.	3.0	9
13	Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif. Chemical Communications, 2019, 55, 10515-10518.	4.1	5
14	An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. Nanoscale, 2019, 11, 13458-13468.	5.6	17
15	Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions. Polymer Testing, 2019, 78, 105996.	4.8	3
16	Crystallization and Aggregation-Induced Emission in a Series of Pyrrolidinylvinylquinoxaline Derivatives. Journal of Physical Chemistry C, 2018, 122, 11119-11127.	3.1	34
17	Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy. Nanoscale, 2018, 10, 7147-7154.	5.6	8
18	Luminescence lifetime encoding in time-domain flow cytometry. Scientific Reports, 2018, 8, 16715.	3.3	12

#	Article	IF	CITATIONS
19	Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. Journal of Physical Chemistry A, 2018, 122, 9813-9820.	2.5	10
20	Multifunctional Rare-Earth Element Nanocrystals for Cell Labeling and Multimodal Imaging. ACS Biomaterials Science and Engineering, 2018, 4, 3578-3587.	5.2	14
21	Close Spectroscopic Look at Dye-Stained Polymer Microbeads. Journal of Physical Chemistry C, 2018, 122, 12782-12791.	3.1	6
22	Hapten-Specific Single-Cell Selection of Hybridoma Clones by Fluorescence-Activated Cell Sorting for the Generation of Monoclonal Antibodies. Analytical Chemistry, 2017, 89, 4007-4012.	6.5	16
23	3-Piperazinyl propenylidene indolone merocyanines: consecutive three-component synthesis and electronic properties of solid-state luminophores with AIE properties. Materials Chemistry Frontiers, 2017, 1, 2013-2026.	5.9	24
24	Standardization of fluorescence measurements in the UV/vis/NIR/IR: needs for and requirements on calibration tools (Conference Presentation). , 2017, , .		0
25	Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. Analytical and Bioanalytical Chemistry, 2015, 407, 3181-3191.	3.7	2
26	Fluorescent Nanoclays: Covalent Functionalization with Amine Reactive Dyes from Different Fluorophore Classes and Surface Group Quantification. Journal of Physical Chemistry C, 2015, 119, 12978-12987.	3.1	30
27	Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern. Analytical Chemistry, 2015, 87, 7204-7210.	6.5	5
28	Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA. Journal of Immunological Methods, 2014, 413, 45-56.	1.4	13
29	Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing. Analytical and Bioanalytical Chemistry, 2014, 406, 3315-3322.	3.7	23
30	Signal-Relevant Properties of Fluorescent Labels and Optical Probes and Their Determination. , 2014, , 15-26.		0
31	Nile-Red–Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir, 2013, 29, 11489-11497.	3.5	60
32	Near-Infrared-Emitting Nanoparticles for Lifetime-Based Multiplexed Analysis and Imaging of Living Cells. ACS Nano, 2013, 7, 6674-6684.	14.6	60
33	Fast and Reliable Measurement of Photoluminescence Quantum Yields forÂthe Development of Fluorescent Probes. Biophysical Journal, 2013, 104, 345a.	0.5	0
34	Simple Approaches to Fluorescence Lifetime Standards Using Dye-Quencher Pairs. Biomedizinische Technik, 2012, 57, .	0.8	0
35	Keeping particles brilliant $\hat{a} \in $ simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Analytical Methods, 2012, 4, 1759.	2.7	18
36	Scope and Limitations of Surface Functional Group Quantification Methods: Exploratory Study with Poly(acrylic acid)-Grafted Micro- and Nanoparticles. Journal of the American Chemical Society, 2012, 134, 8268-8276.	13.7	87

KATRIN HOFFMANN

#	Article	IF	CITATIONS
37	Simple strategies towards bright polymer particles via one-step staining procedures. Dyes and Pigments, 2012, 94, 247-257.	3.7	66
38	Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes. Proceedings of SPIE, 2011, , .	0.8	1
39	Encapsulation of Hydrophobic Dyes in Polystyrene Micro- and Nanoparticles via Swelling Procedures. Journal of Fluorescence, 2011, 21, 937-944.	2.5	99
40	Polymer-and Glass-based Fluorescence Standards for the Near Infrared (NIR) Spectral Region. Journal of Fluorescence, 2011, 21, 953-961.	2.5	11
41	Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles – Relation between electronic properties and packing motifs. Journal of Molecular Structure, 2011, 988, 35-46.	3.6	4
42	The toolbox of fluorescence standards: flexible calibration tools for the standardization of fluorescence-based measurements. Proceedings of SPIE, 2010, , .	0.8	2
43	Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions. Applied Spectroscopy, 2010, 64, 733-741.	2.2	68
44	Spectroscopic Characterization of Plasma – Chemically Functionalized and Fluorophore-Labeled Polymer Surfaces. Reviews in Fluorescence, 2010, , 139-160.	0.5	4
45	Synergistic effects of Miconazole and Polymyxin B on microbial pathogens. Veterinary Research Communications, 2009, 33, 489-505.	1.6	47
46	Anchoring of Fluorophores to Plasma-chemically Modified Polymer Surfaces and the Effect of Cucurbit[6]uril on Dye Emission. Journal of Fluorescence, 2009, 19, 229-237.	2.5	11
47	Simple Calibration and Validation Standards for Fluorometry. Reviews in Fluorescence, 2009, , 1-31.	0.5	11
48	Comparability of Fluorescence Microscopy Data and Need for Instrument Characterization of Spectral Scanning Microscopes. Springer Series on Fluorescence, 2008, , 89-116.	0.8	2
49	Phenanthrene-Fused Boronâ~'Dipyrromethenes as Bright Long-Wavelength Fluorophores. Organic Letters, 2008, 10, 1581-1584.	4.6	145
50	<i>Fluorescence Measurements on Functionalized Polymer Surfaces—Problems and Troubleshooting</i> . Annals of the New York Academy of Sciences, 2008, 1130, 28-34.	3.8	3
51	<i>Standardization of Fluorescence Measurements: Criteria for the Choice of Suitable Standards and Approaches to Fitâ€forâ€Purpose Calibration Tools</i> . Annals of the New York Academy of Sciences, 2008, 1130, 35-43.	3.8	11
52	Linking Fluorometry to Radiometry with Physical and Chemical Transfer Standards: Instrument Characterization and Traceable Fluorescence Measurements. Springer Series on Fluorescence, 2008, , 65-99.	0.8	9
53	Anorganic fluorescence reference materials for decay time of fluorescence emission. Proceedings of SPIE, 2008, , .	0.8	1
54	Hybridmaterialien in der analytischen Chemie. Nachrichten Aus Der Chemie, 2007, 55, 124-129.	0.0	4

4

#	Article	IF	CITATIONS
55	Flouescence reference materials used for optical and biophotonic applications. , 2007, , .		2
56	Monitoring of Amino Functionalities on Plasma-Chemically Modified Polypropylene Supports with a Chromogenic and Fluorogenic Pyrylium Reporter. Langmuir, 2007, 23, 8411-8416.	3.5	33
57	Anbindung von Fluoreszenzfarbstoffen an plasmachemisch funktionalisierte und Cucurbiturilâ€modifizierte OberflĤhen. Vakuum in Forschung Und Praxis, 2007, 19, 31-37.	0.1	10
58	Glass based fluorescence reference materials used for optical and biophotonic applications. , 2006, , .		4
59	Fluorescence Spectroscopic Studies on Plasma-Chemically Modified Polymer Surfaces with Fluorophore-Labeled Functionalities. Journal of Fluorescence, 2006, 16, 441-448.	2.5	30
60	The Calibration Kit Spectral Fluorescence Standards—A Simple and Certified Tool for the Standardization of the Spectral Characteristics of Fluorescence Instruments. Journal of Fluorescence, 2006, 16, 581-587.	2.5	56
61	The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie - International Edition, 2006, 45, 5924-5948.	13.8	510
62	Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 2005, 127, 184-200.	13.7	253
63	How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards. Journal of Fluorescence, 2005, 15, 337-362.	2.5	92
64	Molecular Sieve-Based Materials for Photonic Applications. , 2003, , .		0
65	2,2â€~-Bipyridyl-3,3â€~-diol Incorporated into AlPO4-5 Crystals and Its Spectroscopic Properties as Related to Aqueous Liquid Media. Journal of Physical Chemistry B, 2002, 106, 9744-9752.	2.6	62
66	Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU. Microporous and Mesoporous Materials, 2002, 54, 15-26.	4.4	61
67	Photoinduced switching of nanocomposites consisting of azobenzene and molecular sieves: investigation of the switching states. Microporous and Mesoporous Materials, 2000, 41, 99-106.	4.4	50
68	Modification of the Transport Properties of a Polymethacrylate-Azobenzene Membrane by Photochemical Switching. Chemical Engineering and Technology, 1998, 21, 408.	1.5	21
69	Änderung der Transporteigenschaften einer Polymethacrylat-Azobenzen-Membran durch photochemisches Schalten. Chemie-Ingenieur-Technik, 1998, 70, 718-722.	0.8	2
70	News from AlPO4-5: Microwave synthesis, application as medium to organize molecules for spectroscopy and nonlinear optics, material for one-dimensional membranes. Studies in Surface Science and Catalysis, 1997, , 2171-2178.	1.5	30
71	Switching of optical properties in zeolitic nanocomposites. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1731-1734.	0.9	8
72	The microcrystal prism method for refractive index measurements on zeolite-based nanocomposites. Microporous Materials, 1997, 9, 43-50.	1.6	34

#	Article	IF	CITATIONS
73	Cr3+ in AlPO4-5: Single crystal u.vvis spectroscopy of as-synthesized and modified crystals. Zeolites, 1997, 19, 190-196.	0.5	19
74	Photoinduced switching in nanocomposites of azobenzene and molecular sieves. Advanced Materials, 1997, 9, 567-570.	21.0	40
75	Spectroscopic Properties of Se2â^'2and Seâ^'2in Cancrinite. Journal of Solid State Chemistry, 1996, 126, 50-54.	2.9	29
76	Modification of fluorescence of p-N,N-dimethylaminobenzonitrile by adsorption in molecular sieves. Zeolites, 1996, 16, 138-141.	0.5	8
77	Optical characterization of organized adsorbates in zeolite microcrystals: Polarized absorption spectroscopy. Zeolites, 1996, 16, 281-286.	0.5	35
78	Polarized absorption spectroscopy on microcrystals An essential tool for the characterization of zeolite new materials. Microporous Materials, 1996, 6, 43-49.	1.6	8
79	Fluorescence ofp-N, N-dimethylaminobenzonitrile incorporated in pores of molecular sieves. Journal of Fluorescence, 1994, 4, 75-77.	2.5	3
80	Fluorescence lifetimes of metal(III) chelates of 5-sulphoquinolin-8-ol and their modification by the internal heavy atom effect. Analytica Chimica Acta, 1994, 286, 241-246.	5.4	5
81	Colour and constitution: linear free energy relationships and/or polymethinic colour rules?. Journal of Molecular Structure, 1990, 219, 403-409.	3.6	4
82	Tailoring of Polymer Surfaces with Monotype Functional Groups of Variable Density Using Chemical and Plasma Chemical Processes. , 0, , 62-71.		29
83	Covalent Coupling Of Fluorophores To Polymer Surface-Bonded Functional Groups. , 0, , 171-192.		5