Chunlin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8131385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films. Journal of Materials Science and Technology, 2022, 107, 92-99.	5.6	8
2	Electronic and magnetic properties of sub-unit cell α-Fe2O3 films on the α-Al2O3 (0001) substrate. Computational Materials Science, 2022, 210, 111442.	1.4	2
3	Atomistic origin of high-concentration Ce3+ in {100}-faceted Cr-substituted CeO2 nanocrystals. Acta Materialia, 2021, 203, 116473.	3.8	18
4	Single-Dislocation Schottky Diodes. Nano Letters, 2021, 21, 5586-5592.	4.5	5
5	The Confined Interlayer Growth of Ultrathin Two-Dimensional Fe ₃ O ₄ Nanosheets with Enriched Oxygen Vacancies for Peroxymonosulfate Activation. ACS Catalysis, 2021, 11, 11256-11265.	5.5	125
6	Surfactant-mediated morphology evolution and self-assembly of cerium oxide nanocrystals for catalytic and supercapacitor applications. Nanoscale, 2021, 13, 10393-10401.	2.8	11
7	Ferroelectric domain structure and atomic-scale phase distribution in a Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Ceramics International, 2021, , .	2.3	2
8	Measuring phonon dispersion at an interface. Nature, 2021, 599, 399-403.	13.7	47
9	Spin Polarization-Assisted Dopant Segregation at a Coherent Phase Boundary. ACS Nano, 2021, 15, 19938-19944.	7.3	6
10	Ferroelectric Oxide Thin Film with an Out-of-Plane Electrical Conductivity. Nano Letters, 2020, 20, 1047-1053.	4.5	5
11	Strong metal–metal interaction and bonding nature in metal/oxide interfaces with large mismatches. Acta Materialia, 2019, 179, 237-246.	3.8	13
12	Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11181-11186.	3.3	19
13	Multi-electron transfer enabled by topotactic reaction in magnetite. Nature Communications, 2019, 10, 1972.	5.8	28
14	Ceramic phases with one-dimensional long-range order. Nature Materials, 2019, 18, 19-23.	13.3	18
15	Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. ACS Nano, 2018, 12, 2662-2668.	7.3	30
16	Nanoindentation-induced phase transformation between SiC polymorphs. Materials Letters, 2018, 220, 152-155.	1.3	5
17	Exceptionally high nanoscale wear resistance of a Cu47Zr45Al8 metallic glass with native and artificially grown oxide. Intermetallics, 2018, 93, 312-317.	1.8	31
18	Precipitation of secondary phase in Mg-Zn-Gd alloy after room-temperature deformation and annealing. Journal of Materials Research and Technology, 2018, 7, 135-141.	2.6	18

#	Article	IF	CITATIONS
19	Atomic cale Valence State Distribution inside Ultrafine CeO ₂ Nanocubes and Its Size Dependence. Small, 2018, 14, e1802915.	5.2	77
20	Direct Imaging for Single Molecular Chain of Surfactant on CeO ₂ Nanocrystals. Small, 2018, 14, e1801093.	5.2	23
21	Local chemical ordering within the incubation period as a trigger for nanocrystallization of a highly supercooled Ti-based liquid. Materials and Design, 2018, 156, 504-513.	3.3	18
22	Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr-Co-Cu-Al metallic glasses. Acta Materialia, 2017, 132, 298-306.	3.8	36
23	Solid-phase epitaxial film growth and optical properties of a ferroelectric oxide, Sr2Nb2O7. Journal of Applied Physics, 2017, 122, .	1.1	9
24	Deformation behavior and texture randomization of Mg–Zn–Gd alloys reinforced with icosahedral quasicrystal. International Journal of Materials Research, 2017, 108, 455-464.	0.1	2
25	Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures. ACS Nano, 2017, 11, 12519-12525.	7.3	8
26	Designing biocompatible Ti-based amorphous thin films with no toxic element. Journal of Alloys and Compounds, 2017, 707, 142-147.	2.8	11
27	In-Situ High-Resolution Transmission Electron Microscopy Investigation of Overheating of Cu Nanoparticles. Scientific Reports, 2016, 6, 19545.	1.6	22
28	Mathematical analysis and STEM observations of arrangement of structural units in ã€^001〉 symmetrical tilt grain boundaries. Microscopy (Oxford, England), 2016, 65, 479-487.	0.7	11
29	Eutectic crystallization during fracture of Zr–Cu–Co–Al metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 210-214.	2.6	14
30	Dislocations in icosahedral quasicrystalline phase embedded in hot-deformed Mg alloys. Journal of Alloys and Compounds, 2016, 658, 483-487.	2.8	11
31	Atomic Resolution Imaging of Enamel in Shark Teeth. Materia Japan, 2016, 55, 612-612.	0.1	0
32	Mathematical Analysis of Tilt Boundaries and STEM Observations. Materia Japan, 2016, 55, 582-582.	0.1	0
33	Atomic-scale observation of dynamical fluctuation and three-dimensional structure of gold clusters. Journal of Applied Physics, 2015, 117, .	1.1	22
34	Pseudo-binary electrolyte, LiBH ₄ –LiCl, for bulk-type all-solid-state lithium-sulfur battery. Nanotechnology, 2015, 26, 254001.	1.3	63
35	Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride. Nature Communications, 2015, 6, 6327.	5.8	66
36	A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions. Nanoscale, 2015, 7, 19977-19984.	2.8	5

#	Article	IF	CITATIONS
37	Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. Nature Communications, 2015, 6, 6091.	5.8	47
38	Bulk metallic glassy surface native oxide: Its atomic structure, growth rate and electrical properties. Acta Materialia, 2015, 97, 282-290.	3.8	43
39	Magnetoelectric quasi-(0-3) nanocomposite heterostructures. Nature Communications, 2015, 6, 6680.	5.8	89
40	Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface. Applied Physics Letters, 2015, 107, .	1.5	38
41	Patterning Oxide Nanopillars at the Atomic Scale by Phase Transformation. Nano Letters, 2015, 15, 6469-6474.	4.5	12
42	Secondary phases in quasicrystal-reinforced Mg–3.5Zn–0.6Gd Mg alloy. Materials Characterization, 2015, 108, 132-136.	1.9	15
43	HAADF STEM observation of the Au/CeO2 nanostructures. Materials Letters, 2015, 141, 31-34.	1.3	7
44	Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4. Nature Communications, 2014, 5, 5740.	5.8	112
45	Improved piezoelectricity of PVDF-HFP/carbon black composite films. Journal Physics D: Applied Physics, 2014, 47, 135302.	1.3	73
46	Atomic and electronic structure of the SrNbO3/SrNbO3.4 interface. Applied Physics Letters, 2014, 105, .	1.5	18
47	Controllable Synthesis of Ceria Nanoparticles with Uniform Reactive {100} Exposure Planes. Journal of Physical Chemistry C, 2014, 118, 4437-4443.	1.5	29
48	Full Determination of Individual Reconstructed Atomic Columns in Intermixed Heterojunctions. Nano Letters, 2014, 14, 6584-6589.	4.5	1
49	Synthesis and atomic-scale characterization of CeO2 nano-octahedrons. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 218-223.	1.3	16
50	Interfacial defect complex at the MgO/SrTiO ₃ heterojunction and its electronic impact. RSC Advances, 2014, 4, 51002-51007.	1.7	11
51	Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors. Materials Letters, 2014, 122, 90-93.	1.3	30
52	Formation mechanism of quasicrystals at the nanoscale during hot compression of Mg alloys. Scripta Materialia, 2014, 78-79, 61-64.	2.6	21
53	Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg–Zn–Gd-based alloys. Materials Letters, 2014, 130, 236-239. 	1.3	20
54	Fluorine in Shark Teeth: Its Direct Atomicâ€Resolution Imaging and Strengthening Function. Angewandte Chemie - International Edition, 2014, 53, 1543-1547.	7.2	26

#	Article	IF	CITATIONS
55	Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by Aberration-Corrected STEM. Scientific Reports, 2014, 4, 5521.	1.6	27
56	Effect of Icosahedral Quasicrystalline Fraction and Extrusion Ratio on Microstructure, Mechanical Properties, and Anisotropy of Mg-Zn-Gd-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2725-2734.	1.1	22
57	Excellent mechanical properties of an ultrafine-grained quasicrystalline strengthened magnesium alloy with multi-modal microstructure. Materials Letters, 2013, 107, 181-184.	1.3	23
58	Synthesis and characterization of CeO 2 nano-rods. Ceramics International, 2013, 39, 6607-6610.	2.3	51
59	Atomic-scale structure and electronic property of the La ₂ FeCrO ₆ /SrTiO ₃ interface. Journal of Applied Physics, 2013, 114, 113705.	1.1	6
60	Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons. Materials Letters, 2013, 96, 210-213.	1.3	13
61	Effect of pretreatment and annealing on microstructure and mechanical properties of Mg–1.5Zn–0.25Gd (at%) alloys reinforced with quasicrystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 73-82.	2.6	19
62	Impact of NaF mineralizer on cerium-containing nanoparticles synthesized by hydrothermal process. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 48, 181-186.	1.3	4
63	Microstructures and grain boundaries of cubic boron nitrides. Diamond and Related Materials, 2013, 32, 27-31.	1.8	21
64	Immobilizing Carbon Nanotubes on SiC Foam as a Monolith Catalyst for Oxidative Dehydrogenation Reactions. ChemCatChem, 2013, 5, 1713-1717.	1.8	25
65	Facile synthesis of hybrid hexagonal CeF3 nano-disks on CeO2 frustum pyramids. Materials Letters, 2013, 92, 7-10.	1.3	16
66	Oxygen segregation at coherent grain boundaries of cubic boron nitride. Applied Physics Letters, 2013, 102, 091607.	1.5	4
67	High Crystallinity CuScO\$_{2}\$ Delafossite Films Exhibiting Ultraviolet Photoluminescence Grown by Vapor–Liquid–Solid Tri-phase Epitaxy. Applied Physics Express, 2012, 5, 011201.	1.1	3
68	Structural and electronic impact of SrTiO3 substrate on TiO2 thin films. Journal of Materials Science, 2012, 47, 5148-5157.	1.7	11
69	The effect of nanoquasicrystals on mechanical properties of as-extruded Mg–Zn–Gd alloy. Materials Letters, 2012, 79, 281-283.	1.3	42
70	Quantitative analysis on size dependence of eutectic temperature of alloy nanoparticles in the Ag–Pb system. Applied Physics Letters, 2011, 98, 083108.	1.5	19
71	Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles. Applied Physics Letters, 2011, 99, .	1.5	17
72	Deformation-induced α2→ γ phase transformation in TiAl alloys. Materials Characterization, 2010, 61, 1029-1034.	1.9	24

#	Article	IF	CITATIONS
73	Effect of Pt on the electron-irradiation-induced decomposition of sapphire. Scripta Materialia, 2010, 63, 355-358.	2.6	8
74	Electron-irradiation-induced phase transformation in alumina. Scripta Materialia, 2010, 63, 1013-1016.	2.6	18
75	<i>In situ</i> observations of crystalline-to-liquid and crystalline-to-gas transitions of substrate-supported Ag nanoparticles. Applied Physics Letters, 2010, 96, .	1.5	19
76	Two-dimensional metallic tungsten nanowire network fabricated by electron-beam-induced deposition. Nanotechnology, 2010, 21, 285304.	1.3	9
77	Effects of temperature and electron energy on the electron-irradiation-induced decomposition of sapphire. Philosophical Magazine Letters, 2010, 90, 715-721.	0.5	7
78	<i>In situ</i> TEM observation of the growth and decomposition of monoclinic W ₁₈ O ₄₉ nanowires. Nanotechnology, 2009, 20, 285604.	1.3	22
79	First-principles study of deformation-induced phase transformations in Ti–Al intermetallics. Journal of Materials Research, 2009, 24, 1662-1666.	1.2	8
80	Orientation relationships between TiB (B27), B2, and Ti ₃ Al phases. Journal of Materials Research, 2009, 24, 1688-1692.	1.2	4
81	In situ TEM observations of irradiation-induced phase change in tungsten. Journal of Materials Science, 2009, 44, 1965-1968.	1.7	6
82	<i>In situ</i> TEM observation of decomposition of high-purity sapphire. Philosophical Magazine Letters, 2009, 89, 113-119.	0.5	9
83	High-resolution image simulation of overlap structures in TiAl alloy. Journal of Alloys and Compounds, 2009, 468, 179-186.	2.8	14
84	Silver nanowires with a monoclinic structure fabricated by a thermal evaporation method. Nanotechnology, 2009, 20, 405605.	1.3	15
85	Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 74-79.	2.6	102
86	Electron microscopy study of different stages of oxidation of Tiâ€47Alâ€2Nbâ€2Crâ€0.15B and Tiâ€45Alâ€15Nb 900°C. Journal of Microscopy, 2008, 231, 124-133.	at 0.8	0
87	TEM observations of twin intersections in a Ti–47Al–2Cr–2Nb–0.1Y alloy compressed at room temperature. Journal of Alloys and Compounds, 2008, 454, 201-205.	2.8	4
88	(S)TEM study of different stages of Ti–45Al–8Nb–0.2W–0.2B–0.02Y alloy oxidation at 900°C. Corrosion Science, 2008, 50, 978-988.	3.0	40
89	Deformation-induced γ → DI-α ₂ phase transformation occurring in the twin-intersection region of TiAl alloys. Journal of Materials Research, 2007, 22, 2416-2422.	1.2	6
90	The oxidation behavior of Ti–46.5Al–5Nb at 900°C. Intermetallics, 2007, 15, 989-998.	1.8	31

#	Article	IF	CITATIONS
91	TEM investigation of the oxide scale of Ti–46.5Al–5Nb at 900°C for 50h. Intermetallics, 2007, 15, 824-831.	1.8	26
92	Deformation-induced $\hat{1}^{3}\hat{a}^{\dagger}$, $\hat{1}^{\pm}2$ phase transformation in TiAl alloy compressed at room temperature. Intermetallics, 2007, 15, 722-726.	1.8	15
93	Effect of niobium on the oxidation behavior of TiAl. Journal of Materials Research, 2007, 22, 1486-1490.	1.2	21
94	Orientation relationship between TiB precipitate and \hat{I}^3 -TiAl phase. Scripta Materialia, 2007, 56, 441-444.	2.6	27
95	Phase transformation in the nitride layer during the oxidation of TiAl-based alloys. Scripta Materialia, 2007, 56, 773-776.	2.6	13
96	Effects of Long-Term Thermal Exposure on the Microstructure and Properties of a Cast Ni-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 3014-3022.	1.1	82