Antonio Pantano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8130498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanics of deformation of single- and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2004, 52, 789-821.	2.3	473
2	Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation. Physical Review Letters, 2003, 91, 145504.	2.9	150
3	Inspection of additive-manufactured layered components. Ultrasonics, 2015, 62, 292-298.	2.1	100
4	Mechanics of Axial Compression of Single and Multi-Wall Carbon Nanotubes. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 279-284.	0.8	88
5	Multiwalled carbon nanotube reinforced polymer composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 222-227.	2.6	67
6	Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica, 2008, 43, 263-270.	1.2	47
7	Rapid evaluation of notch stress intensity factors using the peak stress method: Comparison of commercial finite element codes for a range of mesh patterns. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1044-1063.	1.7	41
8	A penalty-based finite element interface technology. Computers and Structures, 2002, 80, 1725-1748.	2.4	38
9	Numerical study for a new methodology of flaws detection in train axles. Ultrasonics, 2014, 54, 841-849.	2.1	34
10	3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures. NDT and E International, 2010, 43, 527-535.	1.7	33
11	Mechanical properties of carbon nanotube fibres: St Venant's principle at the limit and the role of imperfections. Carbon, 2015, 93, 1021-1033.	5.4	33
12	A mesh-independent interface technology for simulation of mixed-mode delamination growth. International Journal of Solids and Structures, 2004, 41, 3809-3831.	1.3	31
13	Simulation of laser generated ultrasound with application to defect detection. Applied Physics A: Materials Science and Processing, 2008, 91, 521-528.	1.1	29
14	A penalty-based interface technology for coupling independently modeled 3D finite element meshes. Finite Elements in Analysis and Design, 2007, 43, 271-286.	1.7	27
15	Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes. Journal of Applied Physics, 2004, 96, 6756-6760.	1.1	25
16	Influence of laser beam profile on the generation of ultrasonic waves. Applied Physics A: Materials Science and Processing, 2011, 105, 959-967.	1.1	24
17	Parameters influencing the stiffness of composites reinforced by carbon nanotubes – A numerical–analytical approach. Composite Structures, 2014, 109, 246-252.	3.1	19
18	A 3D Zig-Zag Sublaminate Model for Analysis of Thermal Stresses in Laminated Composite and Sandwich Plates. Journal of Sandwich Structures and Materials, 2000, 2, 288-312.	2.0	18

ΑΝΤΟΝΙΟ ΡΑΝΤΑΝΟ

#	Article	IF	CITATIONS
19	Numerical model for the characterization of biocomposites reinforced by sisal fibres. Procedia Structural Integrity, 2018, 8, 517-525.	0.3	18
20	Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE. Applied Physics A: Materials Science and Processing, 2010, 98, 327-336.	1.1	16
21	Rapid evaluation of notch stress intensity factors using the peak stress method with 3D tetrahedral finite element models: Comparison of commercial codes. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1005-1034.	1.7	16
22	Novel non-destructive evaluation technique for the detection of poor dispersion of carbon nanotubes in nanocomposites. Composites Part B: Engineering, 2019, 163, 52-58.	5.9	15
23	A numerical-analytical model for the characterization ofÂcomposites reinforced by carbon nanotubes. Applied Physics A: Materials Science and Processing, 2010, 99, 895-902.	1.1	13
24	Surface waves on cylindrical solids: Numerical and experimental study. Ultrasonics, 2013, 53, 913-921.	2.1	13
25	Carbon Nanotubes Dispersion Assessment in Nanocomposites by Means of a Pulsed Thermographic Approach. Materials, 2020, 13, 5649.	1.3	13
26	New Concept in Bioderived Composites: Biochar as Toughening Agent for Improving Performances and Durability of Agave-Based Epoxy Biocomposites. Polymers, 2021, 13, 198.	2.0	13
27	An Equivalent Orthotropic Representation of the Nonlinear Elastic Behavior of Multiwalled Carbon Nanotubes. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 431-439.	0.8	12
28	Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability. International Journal of Fracture, 2011, 171, 169-175.	1.1	12
29	Guided Wave Propagation in a Plate Edge and Application to NDI of Rail Base. Journal of Nondestructive Evaluation, 2012, 31, 245-252.	1.1	12
30	Impeller Optimization in Crossflow Hydraulic Turbines. Water (Switzerland), 2021, 13, 313.	1.2	11
31	Simulation of the Electromechanical Behavior of Multiwall Carbon Nanotubes. ACS Nano, 2009, 3, 3266-3272.	7.3	8
32	Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding. Polymers, 2022, 14, 154.	2.0	8
33	Design of a telescopic tower for wind energy production with reduced environmental impact. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 119-130.	2.7	7
34	An Improved Thermal Lamination Model for Analysis of Heat Transfer in Composite Structures. Journal of Composite Materials, 2002, 36, 701-719.	1.2	6
35	Enhancement of Static and Fatigue Strength of Short Sisal Fiber Biocomposites by Low Fraction Nanotubes. Applied Composite Materials, 2021, 28, 91-112.	1.3	6
36	Finite Element Interface Technology for Modeling Delamination Growth in Composite Structures. AIAA Journal, 2004, 42, 1252-1260.	1.5	5

ΑΝΤΟΝΙΟ ΡΑΝΤΑΝΟ

#	Article	IF	CITATIONS
37	Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique. Materials, 2022, 15, 1208.	1.3	5
38	Mechanical Properties of CNT/Polymer. , 2018, , 201-232.		4
39	Cohesive Model for the Simulation of Crack Initiation and Propagation in Mixed-Mode I/II in Composite Materials, 2019, 26, 1207-1225.	1.3	4
40	Effects of mechanical deformation on electronic transport through multiwall carbon nanotubes. International Journal of Solids and Structures, 2017, 122-123, 33-41.	1.3	3
41	Electrical conductance of carbon nanotubes with misaligned ends. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
42	Electronic properties of carbon nanotubes under torsion. Applied Physics A: Materials Science and Processing, 2013, 110, 77-85.	1.1	2
43	Stress Transfer within CNT Fibres: A FEA Approach. Procedia Engineering, 2015, 109, 435-440.	1.2	1
44	Design of a Low Cost 3D Printable Single-Component Compliant Mechanism for FWMAV's Wing Actuation. Lecture Notes in Mechanical Engineering, 2022, , 39-49.	0.3	1
45	Electromechanical Behavior of Single and Multiwall Carbon Nanotubes. Advances in Science and Technology, 0, , .	0.2	Ο
46	Hybrid nanocomposites with ultra-low filling content by nano-coating fragmentation. Polymer-Plastics Technology and Materials, 0, , 1-15.	0.6	0
47	Electrical Conduction in Carbon Nanotubes under Mechanical Deformations. Challenges and Advances in Computational Chemistry and Physics, 2010, , 335-365.	0.6	0
48	Continuous Microfiber Wire Mandrel‣ess Biofabrication for Soft Tissue Engineering Applications. Advanced Healthcare Materials, 2022, , 2102613.	3.9	0