## Innokenty I Novikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8130368/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF         | CITATIONS             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 1  | Observation of Long Turn-On Delay in Pulsed Quantum Cascade Lasers. Journal of Lightwave<br>Technology, 2022, 40, 2104-2110.                                                                                                                                     | 2.7        | 3                     |
| 2  | High Power Single Mode 1300-nm Superlattice Based VCSEL: Impact of the Buried Tunnel Junction Diameter on Performance. IEEE Journal of Quantum Electronics, 2022, 58, 1-15.                                                                                      | 1.0        | 15                    |
| 3  | 1300-nm wafer-fused VCSELs with InGaAs/InAlGaAs superlattice-based active region. , 2022, , .                                                                                                                                                                    |            | 4                     |
| 4  | Quantum-Cascade Laser with Radiation Emission through a Textured Layer. Semiconductors, 2022, 56, 1-4.                                                                                                                                                           | 0.2        | 0                     |
| 5  | 1.3 μ4m optically-pumped monolithic VCSEL based on GaAs with InGa(Al)As superlattice active region.<br>Laser Physics Letters, 2022, 19, 075801.                                                                                                                  | 0.6        | 3                     |
| 6  | Turn-on delay in the mid-infrared quantum-cascade lasers: experiment and numerical simulations. ,<br>2021, , .                                                                                                                                                   |            | 0                     |
| 7  | Optical Properties of Three-Dimensional InGaP(As) Islands Formed by Substitution of Fifth-Group<br>Elements. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2021, 129, 256-260.                                                       | 0.2        | 0                     |
| 8  | Waferâ€fused 1300Ânm VCSELs with an active region based on superlattice. Electronics Letters, 2021, 57,<br>697-698.                                                                                                                                              | 0.5        | 15                    |
| 9  | Influence of the doping type on the temperature dependencies of the photoluminescence efficiency of<br>InGaAlAs/InGaAs/InP heterostructures. Journal of Luminescence, 2021, 239, 118393.                                                                         | 1.5        | 1                     |
| 10 | Intensity noise characteristics of intracavity contacted VCSELs with rhomboidal oxide current aperture for the magnetometric sensor with Cs <sup>133</sup> vapor cell used in magnetoencephalography. Journal of Physics: Conference Series, 2021, 2103, 012182. | 0.3        | 0                     |
| 11 | Surface Emitting Quantum-Cascade Ring Laser. Semiconductors, 2021, 55, 591.                                                                                                                                                                                      | 0.2        | 2                     |
| 12 | Characterization of lasing regimes of 1.3  µm vertical-cavity surface-emitting lasers based on a<br>short-period InGaAs/InGaAlAs superlattice. Journal of Optical Technology (A Translation of) Tj ETQq0 0 0 rgBT /Ov                                            | verbaek 10 | Tf150 297 Td          |
| 13 | Investigation of the zinc diffusion process into epitaxial layers of indium phosphide and<br>indium-gallium arsenide grown by molecular beam epitaxy. Journal of Optical Technology (A) Tj ETQq1 1 0.78431                                                       | 4 œ₽T /Ov  | ve <b>d</b> ock 10 Tf |
| 14 | Spectral Dynamics of Quantum Cascade Lasers Generating Frequency Combs in the Long-Wavelength<br>Infrared Range. Technical Physics, 2020, 65, 1281-1284.                                                                                                         | 0.2        | 2                     |
| 15 | A Vertical-Cavity Surface-Emitting Laser for the 1.55-μm Spectral Range with Tunnel Junction Based on n++-InGaAs/p++-InGaAs/p++-InAlGaAs Layers. Technical Physics Letters, 2020, 46, 854-858.                                                                   | 0.2        | 9                     |
| 16 | Study of the Spectra of Arched-Cavity Quantum-Cascade Lasers. Optics and Spectroscopy (English) Tj ETQq0 0 0                                                                                                                                                     | rgBT /Ove  | erlock 10 Tf 5        |
| 17 | 1.55-μm-Range Vertical-Cavity Surface-Emitting Lasers, Manufactured by Wafer Fusion of<br>Heterostructures Grown by Solid-Source Molecular-Beam Epitaxy. Semiconductors, 2020, 54, 1276-1283.                                                                    | 0.2        | 5                     |

18 Spectral Characteristics of Half-Ring Quantum-Cascade Lasers. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

Ιννοκέντη Ι Νουικού

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | 10-W 4.6-μm quantum cascade lasers. Quantum Electronics, 2020, 50, 720-721.                                                                                                                                                               | 0.3 | 6         |
| 20 | The Influence of the Parameters of a Short-Period InGaAs/InGaAlAs Superlattice on Photoluminescence<br>Efficiency. Technical Physics Letters, 2020, 46, 1128-1131.                                                                        | 0.2 | 2         |
| 21 | Observation of the increase in turn-on delay of quantum cascade lasers under pulsed electrical pumping with finite rise time. Journal of Physics: Conference Series, 2020, 1697, 012062.                                                  | 0.3 | 0         |
| 22 | Investigation of optical and structural properties of three-dimensional InGaPAs islands formed by substitution of elements of the fifth group. Journal of Physics: Conference Series, 2020, 1697, 012106.                                 | 0.3 | 0         |
| 23 | Quantum-Cascade Lasers with a Distributed Bragg Reflector Formed by Ion-Beam Etching. Technical Physics Letters, 2020, 46, 312-315.                                                                                                       | 0.2 | 8         |
| 24 | Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a<br>Continuous-Wave Lasing Mode. Technical Physics Letters, 2020, 46, 442-445.                                                                  | 0.2 | 8         |
| 25 | High-power (>1 W) room-temperature quantum-cascade lasers for the long-wavelength IR region.<br>Quantum Electronics, 2020, 50, 141-142.                                                                                                   | 0.3 | 20        |
| 26 | The Effect of a Saturable Absorber in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers<br>Fabricated by Wafer Fusion Technology. Technical Physics Letters, 2020, 46, 1257-1262.                                                   | 0.2 | 9         |
| 27 | High-Power (>13 W) Quantum-Cascade Lasers for Long Wavelength Infrared Range. , 2020, , .                                                                                                                                                 |     | 0         |
| 28 | Quantum-Cascade Ring Resonator Laser with 7–8 μm Wavelength and Surface Radiation Output.<br>Semiconductors, 2020, 54, 1816-1819.                                                                                                         | 0.2 | 1         |
| 29 | Vertical cavity surface emitting laser of 1.55 μm spectral range, manufactured by molecular beam<br>epitaxy and wafer fusion technique. Journal of Physics: Conference Series, 2020, 1697, 012178.                                        | 0.3 | 0         |
| 30 | Effect of saturable absorber in 1.5 μm wafer-fused vertical cavity surface-emitting lasers. Journal of<br>Physics: Conference Series, 2020, 1697, 012167.                                                                                 | 0.3 | 0         |
| 31 | 1.55 µm range edge-emitting laser diodes based on InGaAs/InGaAlAs superlattice and InGaAs quantum<br>wells. Journal of Physics: Conference Series, 2020, 1695, 012072.                                                                    | 0.3 | 0         |
| 32 | Optically pumped non-zero field magnetometric sensor for the magnetoencephalographic systems<br>using intra-cavity contacted VCSELs with rhomboidal oxide current aperture. Journal of Physics:<br>Conference Series, 2020, 1697, 012175. | 0.3 | 3         |
| 33 | Design of the New Control System for Linac-200. Physics of Particles and Nuclei Letters, 2020, 17, 600-603.                                                                                                                               | 0.1 | 2         |
| 34 | A Study of the Spatial-Emission Characteristics of Quantum-Cascade Lasers for the 8-μm Spectral Range.<br>Technical Physics Letters, 2020, 46, 1152-1155.                                                                                 | 0.2 | 1         |
| 35 | Dynamics of Frequency Combs Generation by QCLs in 8 μm Wavelength Range. , 2020, ,                                                                                                                                                        |     | 2         |
| 36 | Turn-on Delay of Quantum Cascade Lasers under Pulsed Pumping with Non-zero Rise-time. , 2020, , .                                                                                                                                         |     | 0         |

| #  | Article                                                                                                                                                                                                                          | IF                       | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| 37 | High Power Quantum-Cascade Lasers for 8 Î $4$ m Spectral Region. , 2020, , .                                                                                                                                                     |                          | Ο             |
| 38 | The Technique for QCLs Heating Dynamics Mesurements. , 2020, , .                                                                                                                                                                 |                          | 1             |
| 39 | Analysis of the Internal Optical Losses of the Vertical-Cavity Surface-Emitting Laser of the Spectral<br>Range of 1.55 µm Formed by a Plate Sintering Technique. Optics and Spectroscopy (English Translation) Tj ET             | <sup>-</sup> Qq 10120.78 | 34314 rgBT /O |
| 40 | Temperature Dependence of the Parameters of 1.55-μm Semiconductor Lasers with Thin Quantum Wells<br>Based on Phosphorus-Free Heterostructures. Technical Physics Letters, 2019, 45, 549-552.                                     | 0.2                      | 1             |
| 41 | Vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal current aperture for compact atomic clocks. Quantum Electronics, 2019, 49, 187-190.                                                           | 0.3                      | 6             |
| 42 | Quantum-Cascade Lasers with U-Shaped Resonator: Single Frequency Generation at Room Temperature. , 2019, , .                                                                                                                     |                          | 2             |
| 43 | Generation of Frequency Combs by Quantum Cascade Lasers Emitting in the 8-μm Wavelength Range.<br>Technical Physics Letters, 2019, 45, 1027-1030.                                                                                | 0.2                      | 2             |
| 44 | A heterostructure for resonant-cavity GaAs p-i-n photodiode with 840-860 nm wavelength. Journal of<br>Physics: Conference Series, 2019, 1236, 012071.                                                                            | 0.3                      | 0             |
| 45 | Influence of Output Optical Losses on the Dynamic Characteristics of 1.55-μm Wafer-Fused<br>Vertical-Cavity Surface-Emitting Lasers. Semiconductors, 2019, 53, 1104-1109.                                                        | 0.2                      | 6             |
| 46 | High-Power Quantum-Cascade Lasers Emitting in the 8-μm Wavelength Range. Technical Physics Letters, 2019, 45, 735-738.                                                                                                           | 0.2                      | 16            |
| 47 | Lasing of a Quantum-Cascade Laser with a Thin Upper Cladding. Optics and Spectroscopy (English) Tj ETQq1 1                                                                                                                       | 0.784314                 | rgBT /Overloc |
| 48 | Room Temperature Lasing of Single-Mode Arched-Cavity Quantum-Cascade Lasers. Technical Physics<br>Letters, 2019, 45, 398-400.                                                                                                    | 0.2                      | 17            |
| 49 | Spontaneous Emission and Lasing of a Two-Wavelength Quantum-Cascade Laser. Semiconductors, 2019, 53, 345-349.                                                                                                                    | 0.2                      | 1             |
| 50 | High-power λ = 8 µm quantum-cascade lasers at room temperature. Journal of Physics: Conference<br>Series, 2019, 1400, 066048.                                                                                                    | 0.3                      | 1             |
| 51 | Optical Gain in Laser Heterostructures with an Active Area Based on an InGaAs/InGaAlAs Superlattice.<br>Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 127, 1053-1056.                          | 0.2                      | 12            |
| 52 | Effect of coherent population trapping in a compact microfabricated Cs gas cell pumped by<br>intra-cavity contacted VCSELs with rhomboidal oxide current aperture. Journal of Physics:<br>Conference Series, 2019, 1400, 077014. | 0.3                      | 2             |
| 53 | Temperature performance of InGaAs/InGaAlAsTemperature performance of InGaAs/InGaAlAs laser<br>diodes with δ-doping active region. Journal of Physics: Conference Series, 2019, 1410, 012104.                                     | 0.3                      | 0             |
| 54 | Tunable single-frequency source based on a DFB laser array for the spectral region of 1.55 μm. Quantum Electronics, 2019, 49, 1158-1162.                                                                                         | 0.3                      | 2             |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spectral Shift of Quantum-Cascade Laser Emission under the Action of Control Voltage. Technical<br>Physics Letters, 2019, 45, 1136-1139.                                                                                                                               | 0.2 | 3         |
| 56 | High-coupling distributed feedback lasers for the 1.55 μm spectral region. Quantum Electronics, 2019, 49, 801-803.                                                                                                                                                     | 0.3 | 1         |
| 57 | The Influence of Cavity Design on the Linewidth of Near-IR Single-Mode Vertical-Cavity<br>Surface-Emitting Lasers. Technical Physics Letters, 2018, 44, 28-31.                                                                                                         | 0.2 | 2         |
| 58 | Dual-band generation around 8 μm by quantum cascade lasers in wide temperature range. Journal of<br>Physics: Conference Series, 2018, 1135, 012073.                                                                                                                    | 0.3 | 1         |
| 59 | Quantum-cascade lasers of mid-IR spectral range: epitaxy, diagnostics and device characteristics. EPJ<br>Web of Conferences, 2018, 195, 04001.                                                                                                                         | 0.1 | 1         |
| 60 | Growth and optical characterization of 7.5 μm quantum-cascade laser heterostructures grown by<br>MBE. Journal of Physics: Conference Series, 2018, 1124, 041029.                                                                                                       | 0.3 | 4         |
| 61 | Turn-on Dynamics of Quantum Cascade Lasers with a Wavelength of 8100 nm at Room Temperature.<br>Technical Physics, 2018, 63, 1656-1658.                                                                                                                                | 0.2 | 11        |
| 62 | High Temperature Laser Generation of Quantum-Cascade Lasers in the Spectral Region of 8 μm. Physics of the Solid State, 2018, 60, 2291-2294.                                                                                                                           | 0.2 | 6         |
| 63 | Optical Gain of 1550-nm Range Multiple-Quantum-Well Heterostructures and Limiting Modulation<br>Frequencies of Vertical-Cavity Surface-Emitting Lasers Based on Them. Optics and Spectroscopy<br>(English Translation of Optika I Spektroskopiya), 2018, 125, 238-242. | 0.2 | 7         |
| 64 | On the Impact of Barrier-Layer Doping on the Photoluminescence Efficiency of InGaAlAs/InGaAs/InP<br>Strained-Layer Heterostructures. Semiconductors, 2018, 52, 1156-1159.                                                                                              | 0.2 | 4         |
| 65 | Dual-Frequency Generation in Quantum Cascade Lasers of the 8-μm Spectral Range. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 402-404.                                                                                          | 0.2 | 24        |
| 66 | Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization. Journal of Physics:<br>Conference Series, 2018, 993, 012031.                                                                                                                          | 0.3 | 1         |
| 67 | Lasing in 9.6-μm Quantum Cascade Lasers. Technical Physics, 2018, 63, 1511-1515.                                                                                                                                                                                       | 0.2 | 14        |
| 68 | Quantum-cascade lasers of 8-9 μm spectral range. , 2018, , .                                                                                                                                                                                                           |     | 0         |
| 69 | Effect of barrier doping on photoluminescence of 1550 nm range multi quantum well heterostructures , 2018, , .                                                                                                                                                         |     | Ο         |
| 70 | Heterostructures of Single-Wavelength and Dual-Wavelength Quantum-Cascade Lasers.<br>Semiconductors, 2018, 52, 745-749.                                                                                                                                                | 0.2 | 16        |
| 71 | Room Temperature Lasing of Multi-Stage Quantum-Cascade Lasers at 8 μm Wavelength. Semiconductors,<br>2018, 52, 1082-1085                                                                                                                                               | 0.2 | 18        |
| 72 | Vertical-Cavity Surface-Emitting 1.55-î¼m Lasers Fabricated by Fusion. Technical Physics Letters, 2018, 44, 24-27                                                                                                                                                      | 0.2 | 4         |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mode-Locked Lasers with "Thin―Quantum Wells in 1.55 μm Spectral Range. Technical Physics Letters,<br>2018, 44, 174-177.                                                                          | 0.2 | 1         |
| 74 | Lasing of metamorphic hybrid 1300nm spectral band VCSEL under optical pumping up to 120 ŰC. , 2017, , .                                                                                          |     | 2         |
| 75 | Continuous wave and modulation performance of 1550nm band wafer-fused VCSELs with MBE-grown InP-based active region and GaAs-based DBRs. Proceedings of SPIE, 2017, , .                          | 0.8 | 6         |
| 76 | Optical properties of metamorphic hybrid heterostuctures for vertical-cavity surface-emitting lasers operating in the 1300-nm spectral range. Semiconductors, 2017, 51, 1127-1132.               | 0.2 | 2         |
| 77 | Heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm. Technical Physics<br>Letters, 2017, 43, 666-669.                                                                  | 0.2 | 31        |
| 78 | 6-mW Single-Mode High-Speed 1550-nm Wafer-Fused VCSELs for DWDM Application. IEEE Journal of<br>Quantum Electronics, 2017, 53, 1-8.                                                              | 1.0 | 33        |
| 79 | 1550â€nm mode-locked semiconductor lasers for all-optical analog-to-digital conversion. AlP<br>Conference Proceedings, 2017, , .                                                                 | 0.3 | 0         |
| 80 | The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength. Journal of Physics: Conference Series, 2017, 929, 012082.                                                   | 0.3 | 0         |
| 81 | Semiconductor light sources for near- and mid-infrared spectral ranges. Journal of Physics:<br>Conference Series, 2017, 917, 022003.                                                             | 0.3 | 0         |
| 82 | MBE growth and characterization of InAlAs/InGaAs 9 μm range quantum cascade laser. Journal of<br>Physics: Conference Series, 2017, 917, 052016.                                                  | 0.3 | 1         |
| 83 | Optical characterization of mid-infrared range quantum-cascade laser structures grown by MBE.<br>Journal of Physics: Conference Series, 2017, 917, 052019.                                       | 0.3 | 3         |
| 84 | Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm. Journal of Physics: Conference Series, 2017, 917, 052021.                                                      | 0.3 | 1         |
| 85 | High-speed 1.3 -1.55 um InGaAs/InP PIN photodetector for microwave photonics. Journal of Physics:<br>Conference Series, 2017, 917, 052029.                                                       | 0.3 | 4         |
| 86 | Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures. Journal of Physics:<br>Conference Series, 2017, 929, 012081.                                                      | 0.3 | 0         |
| 87 | Optical properties of InGaAs/InGaAlAs quantum wells for the 1520–1580 nm spectral range.<br>Semiconductors, 2016, 50, 1186-1190.                                                                 | 0.2 | 7         |
| 88 | Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum<br>wells, emitting light in the 1250–1400-nm spectral range. Semiconductors, 2016, 50, 612-615. | 0.2 | 2         |
| 89 | On the gain properties of "thin―elastically strained InGaAs/InGaAlAs quantum wells emitting in the near-infrared spectral region near 1550 nm. Semiconductors, 2016, 50, 1412-1415.              | 0.2 | 9         |
| 90 | Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 î¼m. Semiconductors, 2016, 50, 1299-1303.                                                                            | 0.2 | 22        |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Slow passage through thresholds in quantum dot lasers. Physical Review E, 2016, 94, 052208.                                                                              | 0.8 | 6         |
| 92  | Dropout dynamics in pulsed quantum dot lasers due to mode jumping. Applied Physics Letters, 2015, 106, 261103.                                                           | 1.5 | 5         |
| 93  | Evidence of negative electrorefraction in type-II GaAs/GaAlAs short-period superlattice.<br>Semiconductor Science and Technology, 2015, 30, 115013.                      | 1.0 | 0         |
| 94  | Impact of the carrier relaxation paths on two-state operation in quantum dot lasers. , 2015, , .                                                                         |     | 0         |
| 95  | Lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping. Semiconductors, 2015, 49, 1527-1530.                           | 0.2 | 17        |
| 96  | Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures. Semiconductors, 2015, 49, 1388-1392.  | 0.2 | 3         |
| 97  | Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range. Semiconductors, 2015, 49, 1522-1526.              | 0.2 | 2         |
| 98  | The effect of slow passage in the pulse-pumped quantum dot laser. , 2014, , .                                                                                            |     | 1         |
| 99  | Digital data transmission using electro-optically modulated vertical-cavity surface-emitting laser with saturable absorber. Applied Physics Letters, 2014, 104, .        | 1.5 | 8         |
| 100 | Degradation-robust 850-nm vertical-cavity surface-emitting lasers for 25Gb/s optical data transmission. Semiconductors, 2014, 48, 77-82.                                 | 0.2 | 4         |
| 101 | Dynamical interplay between ground and excited states in quantum dot laser. , 2014, , .                                                                                  |     | Ο         |
| 102 | Influence of optical losses on the dynamic characteristics of linear arrays of near-infrared vertical-cavity surface-emitting lasers. Semiconductors, 2013, 47, 844-848. | 0.2 | 4         |
| 103 | Efficient electro-optic semiconductor medium based on type-II heterostructures. Semiconductors, 2013, 47, 1528-1538.                                                     | 0.2 | 1         |
| 104 | Reliability performance of 25 Gbit s <sup>â^'1</sup> 850 nm vertical-cavity surface-emitting lasers.<br>Semiconductor Science and Technology, 2013, 28, 065010.          | 1.0 | 22        |
| 105 | Progress on single mode VCSELs for data- and tele-communications. Proceedings of SPIE, 2012, , .                                                                         | 0.8 | 21        |
| 106 | High-speed single-mode quantum dot and quantum well VCSELs. Proceedings of SPIE, 2011, , .                                                                               | 0.8 | 5         |
| 107 | A temperature-stable semiconductor laser based on coupled waveguides. Semiconductors, 2011, 45, 550-556.                                                                 | 0.2 | 2         |
| 108 | High-power edge-emitting laser diode with narrow vertical beam divergence. Electronics Letters, 2011, 47, 1339.                                                          | 0.5 | 8         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tilted Wave Lasers: A Way to High Brightness Sources of Light. IEEE Journal of Quantum Electronics, 2011, 47, 1014-1027.                                                                               | 1.0 | 22        |
| 110 | 850 nm optical components for 25 Gb/s optical fiber data communication links over 100 m at 85ŰC. , 2011, , .                                                                                           |     | 4         |
| 111 | Modeling of photonic-crystal-based high-power high-brightness semiconductor lasers. , 2010, , .                                                                                                        |     | 3         |
| 112 | A single-spatial-mode semiconductor laser based on InAs/InGaAs quantum dots with a diffraction filter of optical modes. Semiconductors, 2010, 44, 1357-1361.                                           | 0.2 | 6         |
| 113 | Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current.<br>Semiconductor Science and Technology, 2010, 25, 045003.                                        | 1.0 | 5         |
| 114 | High-power high-brightness semiconductor lasers based on novel waveguide concepts. Proceedings of SPIE, 2010, , .                                                                                      | 0.8 | 16        |
| 115 | Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance. Proceedings of SPIE, 2009, , .                                                                 | 0.8 | 7         |
| 116 | Quantum dot semiconductor lasers of the 1.3 μm wavelength range with high temperature stability of the lasing wavelength (0.2 nm/K). Semiconductors, 2009, 43, 680-684.                                | 0.2 | 0         |
| 117 | Temperature and current dependences of the lasing spectrum's width of quantum dot lasers.<br>Semiconductors, 2009, 43, 1597-1601.                                                                      | 0.2 | 10        |
| 118 | 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers<br>(VCSELs) containing InAs-GaAs submonolayer quantum dot insertions. Proceedings of SPIE, 2009, , . | 0.8 | 9         |
| 119 | High-Power Low-Beam Divergence Edge-Emitting Semiconductor Lasers with 1- and 2-D Photonic<br>Bandgap Crystal Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1113-1122.  | 1.9 | 27        |
| 120 | Wavelength-stabilized tilted wave lasers with a narrow vertical beam divergence. Semiconductor Science and Technology, 2008, 23, 075043.                                                               | 1.0 | 10        |
| 121 | High-gain injection quantum-dot lasers operating at wavelengths above 1300 nm. Technical Physics<br>Letters, 2008, 34, 1008-1010.                                                                      | 0.2 | 2         |
| 122 | Generation of superradiation in quantum dot nanoheterostructures. Semiconductors, 2008, 42, 714-719.                                                                                                   | 0.2 | 1         |
| 123 | Single-Lobe Single-Wavelength Lasing in Ultrabroad-Area Vertical-Cavity Surface-Emitting Lasers Based on the Integrated Filter Concept. IEEE Journal of Quantum Electronics, 2008, 44, 724-731.        | 1.0 | 2         |
| 124 | A 1.33 µm InAs/GaAs quantum dot laser with a 46 cm <sup>â^'1</sup> modal gain. Semiconductor Science<br>and Technology, 2008, 23, 105004.                                                              | 1.0 | 41        |
| 125 | High-power one-, two-, and three-dimensional photonic crystal edge-emitting laser diodes for ultra-high brightness applications. Proceedings of SPIE, 2008, , .                                        | 0.8 | 12        |
| 126 | High-power single mode (>1W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence. Applied Physics Letters, 2008, 92, .                       | 1.5 | 44        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Tilted cavity concept for the high-power wavelength stabilized diode lasers. , 2008, , .                                                                                                         |     | Ο         |
| 128 | Broad-area InAsâ^•GaAs quantum dot lasers incorporating Intermixed passive waveguide. Electronics<br>Letters, 2007, 43, 29.                                                                      | 0.5 | 6         |
| 129 | The impact of thermal effects on the performance of vertical-cavity surface-emitting lasers based on sub-monolayer InGaAs quantum dots. Semiconductor Science and Technology, 2007, 22, 203-208. | 1.0 | 6         |
| 130 | A high-power 975 nm tilted cavity laser with a 0.13 nm K <sup>â^'1</sup> thermal shift of the lasing wavelength. Semiconductor Science and Technology, 2007, 22, 1061-1065.                      | 1.0 | 13        |
| 131 | High-power wavelength stabilized 970nm tilted cavity laser with a 41.3dB side mode suppression ratio.<br>Applied Physics Letters, 2007, 91, 241112.                                              | 1.5 | 7         |
| 132 | Competition Of Different Recombination Channels In Metamorphic 1.5 μm Range Quantum Dot Lasers On<br>GaAs Substrate. AIP Conference Proceedings, 2007, , .                                       | 0.3 | 0         |
| 133 | MBE-grown metamorphic lasers for applications at telecom wavelengths. Journal of Crystal Growth, 2007, 301-302, 914-922.                                                                         | 0.7 | 51        |
| 134 | MBE-grown ultra-large aperture single-mode vertical-cavity surface-emitting laser with all-epitaxial filter section. Journal of Crystal Growth, 2007, 301-302, 945-950.                          | 0.7 | 2         |
| 135 | Anomalous dynamic characteristics of semiconductor quantum-dot lasers generating on two quantum states. Technical Physics Letters, 2007, 33, 4-7.                                                | 0.2 | 12        |
| 136 | Vertical-Cavity Surface-Emitting Lasers Based on Submonolayer InGaAs Quantum Dots. IEEE Journal of<br>Quantum Electronics, 2006, 42, 849-856.                                                    | 1.0 | 40        |
| 137 | Longitudinal photonic bandgap crystal laser diodes with ultra-narrow vertical beam divergence. ,<br>2006, , .                                                                                    |     | 9         |
| 138 | 1.3-1.5 μm quantum dot lasers on foreign substrates: growth using defect reduction technique,<br>high-power CW operation, and degradation resistance. , 2006, , .                                |     | 2         |
| 139 | VCSELs based on arrays of sub-monolayer InGaAs quantum dots. Semiconductors, 2006, 40, 615-619.                                                                                                  | 0.2 | 9         |
| 140 | Experimental study of temperature dependence of threshold characteristics in semiconductor VCSELs based on submonolayer InGaAs QDs. Semiconductors, 2006, 40, 1232-1236.                         | 0.2 | 2         |
| 141 | Metamorphic 1.5 µm-range quantum dot lasers on a GaAs substrate. Semiconductor Science and<br>Technology, 2006, 21, 691-696.                                                                     | 1.0 | 31        |
| 142 | Single transverse mode 850â€nm GaAs/AlGaAs lasers with narrow beam divergence. Electronics Letters, 2006, 42, 1157.                                                                              | 0.5 | 8         |
| 143 | High brilliance photonic band crystal lasers. , 2006, 6350, 22.                                                                                                                                  |     | 5         |
| 144 | Single mode cw operation of 658nm AlGaInP lasers based on longitudinal photonic band gap crystal.<br>Applied Physics Letters, 2006, 88, 231108.                                                  | 1.5 | 24        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | High power GaAsâ^•AlGaAs lasers (λâ^¼850nm) with ultranarrow vertical beam divergence. Applied Physics<br>Letters, 2006, 89, 231114.                                                                     | 1.5 | 13        |
| 146 | Degradation-robust single mode continuous wave operation of 1.46î¼m metamorphic quantum dot<br>lasers on GaAs substrate. Applied Physics Letters, 2006, 89, 041113.                                      | 1.5 | 28        |
| 147 | Edge and surface-emitting tilted cavity lasers (Invited Paper). , 2005, , .                                                                                                                              |     | 3         |
| 148 | QD lasers: physics and applications. , 2005, , .                                                                                                                                                         |     | 16        |
| 149 | High-power InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system. Journal of Crystal Growth, 2005, 278, 335-341.                                                                        | 0.7 | 31        |
| 150 | Effect of p-Doping of the Active Region on the Temperature Stability of InAsâ^•GaAs QD Lasers.<br>Semiconductors, 2005, 39, 477.                                                                         | 0.2 | 28        |
| 151 | Temperature Dependence of the Effective Coefficient of Auger Recombination in 1.3 μm InAsâ^•GaAs QD<br>Lasers. Semiconductors, 2005, 39, 481.                                                            | 0.2 | 11        |
| 152 | Continuous-wave Lasing of Single-Mode Metamorphic Quantum Dot Lasers for the 1.5-μm Spectral Region. Semiconductors, 2005, 39, 1415.                                                                     | 0.2 | 10        |
| 153 | Low divergence edge-emitting laser with asymmetric waveguide based on one-dimensional photonic crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 919-922.                | 0.8 | 12        |
| 154 | High-power singlemode CW operation of 1.5â€[micro sign]m-range quantum dot GaAs-based laser.<br>Electronics Letters, 2005, 41, 478.                                                                      | 0.5 | 30        |
| 155 | High power GalnPâ^•AlGaInP visible lasers (=646â€nm) with narrow circular shaped far-field pattern.<br>Electronics Letters, 2005, 41, 741.                                                               | 0.5 | 13        |
| 156 | High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap<br>crystal with narrow vertical beam divergence. IEEE Journal of Quantum Electronics, 2005, 41, 1341-1348. | 1.0 | 35        |
| 157 | High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers. Semiconductor<br>Science and Technology, 2005, 20, 340-342.                                                               | 1.0 | 150       |
| 158 | Ultrahigh gain and non-radiative recombination channels in 1.5 µm range metamorphic InAs–InGaAs<br>quantum dot lasers on GaAs substrates. Semiconductor Science and Technology, 2005, 20, 33-37.         | 1.0 | 16        |
| 159 | Electroluminescent studies of emission characteristics of InGaAsN/GaAs injection lasers in a wide temperature range. Semiconductors, 2004, 38, 727-731.                                                  | 0.2 | 0         |
| 160 | Mechanism of dicke superradiance in semiconductor heterostructures. Semiconductors, 2004, 38, 837-841.                                                                                                   | 0.2 | 3         |
| 161 | Wavelength-stabilized tilted cavity quantum dot laser. Semiconductor Science and Technology, 2004, 19, 1183-1188.                                                                                        | 1.0 | 28        |

162 Tilted cavity laser (Critical Review Lecture). , 2004, 5509, 61.

| #   | ARTICLE                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Electroluminescence of injection lasers based on vertically coupled quantum dots near the lasing threshold. Semiconductors, 2003, 37, 112-114.                                            | 0.2 | 0         |
| 164 | Temperature characteristics of low-threshold high-efficiency quantum-dot lasers with the emission<br>wavelength from 1.25 to 1.29 Âμm. Semiconductors, 2003, 37, 1239-1242.               | 0.2 | 9         |
| 165 | Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide.<br>Electronics Letters, 2003, 39, 1729.                                                | 0.5 | 15        |
| 166 | Two-photon absorption in InGaAsP waveguides. , 2003, , .                                                                                                                                  |     | 0         |
| 167 | Peculiarities of electroluminescence of quantum dot laser heterostructures. , 2003, 5036, 67.                                                                                             |     | Ο         |
| 168 | Superradiance as a transition phase from spontaneous to stimulated emission in low-dimensional semiconductor heterostructures. , 2003, , .                                                |     | 0         |
| 169 | Degradation of NSe-Free Blue-Green ZnSe-Based Light Emitting Diodes with Superlattice Miniband Hole<br>Transport. Physica Status Solidi (B): Basic Research, 2002, 229, 1019-1023.        | 0.7 | 1         |
| 170 | Waveguide InGaAsP/InP photodetectors for low-power autocorrelation measurements at 1.55 µm.<br>Semiconductors, 2002, 36, 714-716.                                                         | 0.2 | 0         |
| 171 | Improved degradation stability of blue-green II-VI light-emitting diodes with excluded nitrogen-doped ZnSe-based layers. Semiconductors, 2001, 35, 1340-1344.                             | 0.2 | 8         |
| 172 | Treatment of inhomogeneous radiation broadening in quantum dot heterostructures described within the framework of the superradiation model. Technical Physics Letters, 2000, 26, 259-261. | 0.2 | 0         |
| 173 | Collective resonance and form factor of homogeneous broadening in semiconductors. Applied Physics Letters, 2000, 76, 2514-2516.                                                           | 1.5 | 11        |
| 174 | Collective Resonance and Form-Factor of Homogeneous Broadening in Semiconductors. Japanese<br>Journal of Applied Physics, 1999, 38, 4772-4774.                                            | 0.8 | 3         |
| 175 | Collective resonances and shape function for homogeneous broadening of the emission spectra of quantum-well semiconductor heterostructures. Semiconductors, 1999, 33, 779-781.            | 0.2 | 2         |
| 176 | Superradiance in semiconductors. Semiconductors, 1999, 33, 1309-1314.                                                                                                                     | 0.2 | 5         |