
Tadashi Itagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8130112/publications.pdf Version: 2024-02-01

Τλολεμι Ιτλολκι

#	Article	IF	CITATIONS
1	The causative agents of fascioliasis in animals and humans: Parthenogenetic Fasciola in Asia and other regions. Infection, Genetics and Evolution, 2022, 99, 105248.	2.3	6
2	Molecular analyses confirm the coexistence of Fasciola gigantica and parthenogenetic Fasciola in the Philippines. Parasitology International, 2022, 88, 102562.	1.3	3
3	Molecular characterization of Oxyspirura mansoni and Philophthalmus gralli collected from the eyes of domestic chickens in Bangladesh. Parasitology International, 2021, 80, 102243.	1.3	2
4	Molecular characterization revealed Fasciola specimens in Ecuador are all Fasciola hepatica, none at all of Fasciola gigantica or parthenogenic Fasciola species. Parasitology International, 2021, 80, 102215.	1.3	9
5	Prevalence of Trichinella T9 in Japanese black bears (Ursus thibetanus japonicus) in Iwate prefecture, Japan. Parasitology International, 2021, 80, 102217.	1.3	4
6	Do aspermic (parthenogenetic) Fasciola forms have the ability to reproduce their progeny via parthenogenesis?. Journal of Helminthology, 2021, 95, e36.	1.0	3
7	Molecular characterization of <i>Ascaridia galli</i> from Bangladesh and development of a PCR method for distinguishing <i>A. galli</i> from <i>Heterakis</i> spp Journal of Veterinary Medical Science, 2021, 83, 666-670.	0.9	2
8	Genetic diversity and population structure analyses based on microsatellite DNA of parthenogenetic Fasciola flukes obtained from cattle and sika deer in Japan. Parasitology Research, 2021, 120, 1341-1350.	1.6	6
9	Development of a multiplex PCR method for discriminating between Heterakis gallinarum, H. beramporia, and H. indica parasites of poultry. Veterinary Parasitology, 2021, 295, 109463.	1.8	2
10	Prevalence of Nosema species infections in Apis cerana japonica and Apis mellifera honeybees in the Tohoku region of Japan. Parasitology International, 2021, 83, 102361.	1.3	1
11	Detection and molecular characteristics of Rhytidodoides sp. (Digenea: Rhytidodidae) from the gall bladder of green sea turtles (Chelonia mydas) in the Ogasawara Islands, Japan. Parasitology International, 2021, 83, 102377.	1.3	0
12	Detection and molecular characteristics of Pyelosomum cochlear (Digenea: Pronocephalidae) in the urinary bladder of the green sea turtle (Chelonia mydas) in the Northwest Pacific Ocean. Infection, Genetics and Evolution, 2021, 93, 104962.	2.3	0
13	Development of conventional multiplex PCR method for discrimination between <i>Dispharynx nasuta</i> and <i>Cheilospirura hamulosa</i> (Nematoda: Acuariidae) parasitizing poultry. Journal of Veterinary Medical Science, 2021, 83, 226-229.	0.9	0
14	A rebuttal letter to Letter to the Editor by P. Heneberg on "Taxonomic comments on the validity of Echinostoma miyagawai Ishii, 1932 (Trematoda: Echinostomatidae)― Parasitology International, 2020, 74, 101971.	1.3	1
15	The prevalence and molecular characterization of Acarapis woodi and Varroa destructor mites in honeybees in the Tohoku region of Japan. Parasitology International, 2020, 75, 102052.	1.3	2
16	Multigene typing and phylogenetic analysis of Fasciola from endemic foci in Iran. Infection, Genetics and Evolution, 2020, 80, 104202.	2.3	5
17	Phylogenetic relationships between Lymnaeidae in relation to infection with <i>Fasciola</i> sp. in Hokkaido, Japan. Molluscan Research, 2020, 40, 160-168.	0.7	6
18	First report of <i>Paragonimus skrjabini miyazakii</i> metacercariae in <i>Geothelphusa dehaani</i> (Sawagani) occurring in Iwate Prefecture, Japan. Journal of Veterinary Medical Science, 2019, 81, 1109-1112.	0.9	3

Tadashi Itagaki

#	Article	IF	CITATIONS
19	Characterization of Echinostoma revolutum and Echinostoma robustum from ducks in Bangladesh based on morphology, nuclear ribosomal ITS2 and mitochondrial nad1 sequences. Parasitology International, 2019, 69, 1-7.	1.3	21
20	Morphological and genetic characterization of green-banded broodsacs of Leucochloridium (Leucochloridiidae: Trematoda) sporocysts detected in Succinea lauta in Hokkaido, Japan. Parasitology International, 2019, 68, 53-56.	1.3	2
21	Infection by and Molecular Features of Learedius learedi (Digenea: Schistosomatoidea) in Green Sea Turtles (Chelonia mydas) on the Ogasawara Islands, Japan. Journal of Parasitology, 2019, 105, 533.	0.7	4
22	Infection by and Molecular Features of (Digenea: Schistosomatoidea) in Green Sea Turtles () on the Ogasawara Islands, Japan. Journal of Parasitology, 2019, 105, 533-538.	0.7	1
23	Hybrid origin of Asian aspermic <i>Fasciola</i> flukes is confirmed by analyzing two single-copy genes, <i>pepck</i> and <i>pold</i> . Journal of Veterinary Medical Science, 2018, 80, 98-102.	0.9	21
24	Molecular characterization and phylogenetic analysis of Fasciola gigantica from Nigeria. Parasitology International, 2017, 66, 893-897.	1.3	25
25	Gastrointestinal pseudoparasitism by chestnut weevil (<i>Curculio sikkimensis</i>) larvae in a dog. Journal of Small Animal Practice, 2017, 58, 302-302.	1.2	0
26	Nuclear and mitochondrial DNA analysis reveals that hybridization between <i>Fasciola hepatica</i> and <i>Fasciola gigantica</i> occurred in China. Parasitology, 2017, 144, 206-213.	1.5	40
27	Molecular and phylogenetic analyses of the liver amphistome Explanatum explanatum (Creplin, 1847) Fukui, 1929 in ruminants from Bangladesh and Nepal based on nuclear ribosomal ITS2 and mitochondrial nad1 sequences. Journal of Helminthology, 2017, 91, 497-503.	1.0	7
28	Phylogenetic relationships between Dicrocoelium chinensis populations in Japan and China based on mitochondrial nad1 gene sequences. Parasitology Research, 2017, 116, 2605-2609.	1.6	9
29	First report of <i>Fasciola</i> larva infection in <i>Galba truncatula</i> (Müller, 1774) (Gastropoda,) Tj ETQq1 1 Science, 2017, 79, 1381-1383.	l 0.78431 0.9	.4 rgBT /Ove 7
30	Molecular characterization and phylogenetic analysis of <i>Explanatum explanatum</i> in India based on nucleotide sequences of ribosomal ITS2 and the mitochondrial gene <i>nad1</i> . Journal of Veterinary Medical Science, 2016, 78, 1745-1748.	0.9	2
31	Molecular characterization of <i>Fasciola gigantica</i> in Delhi, India and its phylogenetic relation to the species from South Asian countries. Journal of Veterinary Medical Science, 2016, 78, 1529-1532.	0.9	17
32	Novel methods for the molecular discrimination of Fasciola spp. on the basis of nuclear protein-coding genes. Parasitology International, 2016, 65, 180-183.	1.3	50
33	Molecular characterization and phylogenetic analysis of Fasciola hepatica from Peru. Parasitology International, 2016, 65, 171-174.	1.3	21
34	Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp International Journal for Parasitology, 2016, 46, 361-374.	3.1	40
35	Sequence differences in the internal transcribed spacer 1 and 5.8S ribosomal RNA among three <i>Moniezia</i> species isolated from ruminants in Japan. Journal of Veterinary Medical Science, 2015, 77, 105-107.	0.9	13
36	Molecular phylogenetic analysis of Fasciola flukes from eastern India. Parasitology International, 2015, 64, 334-338.	1.3	34

#	Article	IF	CITATIONS
37	Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L. Vaccine, 2015, 33, 1596-1601.	3.8	18

Morphological and molecular characterization of Eurytrema cladorchis parasitizing cattle (Bos) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702

39	Vaccine potential of recombinant pro- and mature cathepsinL1 against fasciolosis gigantica in mice. Acta Tropica, 2015, 150, 71-78.	2.0	10
40	Molecular characterization of Cryptosporidium parvum from two different Japanese prefectures, Okinawa and Hokkaido. Parasitology International, 2015, 64, 161-166.	1.3	19
41	Molecular detection and characterization of Cryptosporidium species in household dogs, pet shop puppies, and dogs kept in a school of veterinary nursing in Japan. Veterinary Parasitology, 2014, 200, 284-288.	1.8	14
42	Molecular phylogenetic identification of Fasciola flukes in Nepal. Parasitology International, 2014, 63, 758-762.	1.3	33
43	Characteristics and molecular phylogeny of Fasciola flukes from Bangladesh, determined based on spermatogenesis and nuclear and mitochondrial DNA analyses. Parasitology Research, 2014, 113, 2493-2501.	1.6	52
44	Distinct Distribution of <i>Dicrocoelium dendriticum</i> and <i>D. chinensis</i> in lwate Prefecture, Japan, and a New Final Host Record for <i>D. chinensis</i> . Journal of Veterinary Medical Science, 2014, 76, 1415-1417.	0.9	8
45	Molecular identification ofFasciolaspp. (Digenea: Platyhelminthes) in cattle from Vietnam. Parasite, 2012, 19, 85-89.	2.0	23
46	Molecular Analysis of Aspermic <i>Fasciola</i> Flukes from Korea on the Basis of the Nuclear ITS1 Region and Mitochondrial DNA Markers and Comparison with Japanese Aspermic <i>Fasciola</i> Flukes. Journal of Veterinary Medical Science, 2012, 74, 899-904.	0.9	20
47	Identification of Fasciola flukes in Thailand based on their spermatogenesis and nuclear ribosomal DNA, and their intraspecific relationships based on mitochondrial DNA. Parasitology International, 2012, 61, 545-549.	1.3	37
48	Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers. Parasitology International, 2011, 60, 474-479.	1.3	39
49	Prevalence of intestinal parasites and genotyping of Giardia intestinalis in pet shop puppies in east Japan. Veterinary Parasitology, 2011, 176, 74-78.	1.8	23
50	Hybridization experiments indicate incomplete reproductive isolating mechanism between <i>Fasciola hepatica</i> and <i>Fasciola gigantica</i> . Parasitology, 2011, 138, 1278-1284.	1.5	26
51	Identification of Fasciola species isolated from Egypt based on sequence analysis of genomic (ITS1 and) Tj ETQq1	1_0,78431 1.3	l4 ₇ gBT /O
52	DNA Types of Aspermic Fasciola Species in Japan. Journal of Veterinary Medical Science, 2010, 72, 1371-1374.	0.9	27
53	Discrimination of the ITS1 types of Fasciola spp. based on a PCR–RFLP method. Parasitology Research, 2010, 106, 757-761.	1.6	77
54	Molecular characterization of Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola sp. in China based on nuclear and mitochondrial DNA. Parasitology Research, 2009, 105, 809-815.	1.6	89

Tadashi Itagaki

#	Article	IF	CITATIONS
55	Occurrence of spermic diploid and aspermic triploid forms of Fasciola in Vietnam and their molecular characterization based on nuclear and mitochondrial DNA. Parasitology International, 2009, 58, 81-85.	1.3	83
56	Prevalence of Giardia intestinalis Infection in Household Cats of Tohoku District in Japan. Journal of Veterinary Medical Science, 2006, 68, 161-163.	0.9	14
57	Molecular Characterization of Parthenogenic Fasciola sp. in Korea on the Basis of DNA Sequences of Ribosomal ITS1 and Mitochondrial NDI Gene. Journal of Veterinary Medical Science, 2005, 67, 1115-1118.	0.9	94
58	Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamete dehydrogenase gene sequencing. Veterinary Parasitology, 2005, 133, 283-287.	1.8	82
59	Genetic characterization of parthenogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitology, 2005, 131, 679-685.	1.5	153
60	Detection of Giardia Antigen in Puppies Using Enzyme-linked Immunosorbent Assay. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2004, 57, 579-582.	0.1	4
61	Discrimination of Three Amphistome Species by PCR-RFLP Based on rDNA ITS2 Markers. Journal of Veterinary Medical Science, 2003, 65, 931-933.	0.9	57
62	An Investigation of Heavy Metal Exposure and Risks to Wildlife in the Kafue Flats of Zambia Journal of Veterinary Medical Science, 2001, 63, 315-318.	0.9	13
63	Comparative Study of the Reproductive Organs of Fasciola Groups by Optical Microscope Journal of Veterinary Medical Science, 2001, 63, 735-742.	0.9	25
64	Mitochondrial DNA polymorphism of a triploid form of Fasciola in Japan. Journal of Helminthology, 2001, 75, 193-6.	1.0	3
65	Triploid form of Fasciola in Japan: genetic relationships between Fasciola hepaticaand Fasciola giganticadetermined by ITS-2 sequence of nuclear rDNA. International Journal for Parasitology, 1998, 28, 777-781.	3.1	107
66	Taxonomic Status of the Japanese Triploid Forms of Fasciola: Comparison of Mitochondrial ND1 and COI Sequences with F. hepatica and F. gigantica. Journal of Parasitology, 1998, 84, 445.	0.7	43
67	Taxonomic status of the Japanese triploid forms of Fasciola: comparison of mitochondrial ND1 and COI sequences with F. hepatica and F. gigantica. Journal of Parasitology, 1998, 84, 445-8.	0.7	9
68	Infectivity of Three Species of Fasciola to Wistar Rats Journal of Veterinary Medical Science, 1994, 56, 977-979.	0.9	10
69	Susceptibility of Japanese Lymnaea ollula to Nigerian Fasciola gigantica Nihon Juigaku Zasshi, 1989, 51, 853-854.	0.3	4
70	Experimental infection of Japanese Lymnaea snails with Australian Fasciola hepatica Nihon Juigaku Zasshi, 1988, 50, 1085-1091.	0.3	9
71	The snail host of Fasciola sp. in the Tempoku district of Hokkaido Nihon Juigaku Zasshi, 1986, 48, 323-328.	0.3	5