Girish C Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8129960/publications.pdf

Version: 2024-02-01

39 1,928 17 37 papers citations h-index g-index

40 40 40 40 3548

40 40 3548
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Molecular and Cellular Pharmacology, 2011, 3, 83-92.	1.7	650
2	Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nature Genetics, 2018, 50, 814-824.	21.4	196
3	MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters, 2017, 407, 9-20.	7.2	114
4	miR 488* inhibits androgen receptor expression in prostate carcinoma cells. International Journal of Cancer, 2011, 129, 810-819.	5.1	113
5	Housekeeping Gene Selection Advisory: Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and β-Actin Are Targets of miR-644a. PLoS ONE, 2012, 7, e47510.	2.5	71
6	Androgen receptorâ€related diseases: what do we know?. Andrology, 2016, 4, 366-381.	3.5	70
7	A Catalytically Active Group II Intron Domain 5 Can Function in the U12-Dependent Spliceosome. Molecular Cell, 2002, 9, 1145-1150.	9.7	69
8	A comprehensive review of web-based non-coding RNA resources for cancer research. Cancer Letters, 2017, 407, 1-8.	7.2	63
9	Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. Rna, 1999, 5, 525-538.	3.5	57
10	miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies. Molecular Cancer, 2015, 14, 185.	19.2	42
11	Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13. Aging, 2017, 9, 1825-1843.	3.1	39
12	Intrinsic expression of host genes and intronic miRNAs in prostate carcinoma cells. Cancer Cell International, 2009, 9, 21.	4.1	35
13	MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Research, 2019, 79, 1844-1856.	0.9	35
14	Domains of human U4atac snRNA required for U12-dependent splicing in vivo. Nucleic Acids Research, 2002, 30, 4650-4657.	14.5	26
15	The intramolecular stem-loop structure of U6 snRNA can functionally replace the U6atac snRNA stem-loop. Rna, 2001, 7, 94-105.	3.5	25
16	Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids, 2021, 173, 108878.	1.8	22
17	A revised model for U4atac/U6atac snRNA base pairing. Rna, 2002, 8, 125-128.	3.5	18
18	Functionally important structural elements of U12 snRNA. Nucleic Acids Research, 2011, 39, 8531-8543.	14.5	18

#	Article	IF	CITATIONS
19	MicroRNA Regulating Glutathione S-Transferase P1 in Prostate Cancer. Current Pharmacology Reports, 2015, 1, 79-88.	3.0	16
20	The muscle regulatory transcription factor MyoD participates with p53 to directly increase the expression of the pro-apoptotic Bcl2 family member PUMA. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1532-1542.	4.9	16
21	Immunological characteristics of a recombinant hepatitis B virus-derived multiple-epitope polypeptide: a study in polyvalent vaccine design. Vaccine, 1994, 12, 259-266.	3.8	15
22	U4 small nuclear RNA can function in both the major and minor spliceosomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 93-98.	7.1	14
23	Mutations of RNA splicing factors in hematological malignancies. Cancer Letters, 2017, 409, 1-8.	7.2	14
24	Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer. PLoS ONE, 2019, 14, e0224071.	2.5	14
25	Small-Molecule HSP27 Inhibitor Abolishes Androgen Receptors in Glioblastoma. Journal of Medicinal Chemistry, 2021, 64, 1570-1583.	6.4	10
26	U6atac snRNA stem-loop interacts with U12 p65 RNA binding protein and is functionally interchangeable with the U12 apical stem-loop III. Scientific Reports, 2016, 6, 31393.	3.3	8
27	Racial disparities disruptive genes in prostate carcinogenesis. Frontiers in Bioscience - Scholar, 2017, 9, 244-253.	2.1	8
28	MicroRNAs and Androgen Receptor 3' Untranslated Region: A Missing Link in Castration-resistant Prostate Cancer?. Molecular and Cellular Pharmacology, 2011, 3, 107-113.	1.7	8
29	The conserved 3' end domain of U6atac snRNA can direct U6 snRNA to the minor spliceosome. Rna, 2009, 15, 1198-1207.	3.5	7
30	A narrative review on the basic and clinical aspects of the novel SARS-CoV-2, the etiologic agent of COVID-19. Annals of Translational Medicine, 2020, 8, 1686-1686.	1.7	6
31	Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors. Cancer Letters, 2016, 371, 262-273.	7.2	5
32	Molecular characterization of a novel androgen receptor transgene responsive to MicroRNA mediated post-transcriptional control exerted via 3′-untranslated region. Prostate, 2016, 76, 834-844.	2.3	4
33	The androgen receptor messenger RNA: what do we know?. RNA Biology, 2022, 19, 819-828.	3.1	4
34	Targeting of Androgen Receptor Expression by Andro-miRs as Novel Adjunctive Therapeutics in Prostate Cancer. Journal of Cancer Therapy, 2013, 04, 47-58.	0.4	3
35	Hallmarks of cancer– focus on RNA metabolism and regulatory noncoding RNAs. Cancer Letters, 2018, 420, 208-209.	7.2	3
36	Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase to Regulate Serum Response Factor (SRF)-Mediated MyoD Transcription. Journal of Molecular Signaling, 2020, 14, 1.	0.5	1

GIRISH C SHUKLA

#	Article	IF	CITATIONS
37	RNA biology-featuring the special issue guest editors "cancer letters― Cancer Letters, 2018, 421, 41-42.	7.2	O
38	Title is missing!. , 2019, 14, e0224071.		0
39	Title is missing!. , 2019, 14, e0224071.		O