Cailong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8129245/publications.pdf

Version: 2024-02-01

186254 197805 2,979 49 28 49 citations h-index g-index papers 49 49 49 3189 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. ACS Applied Materials & Emp; Interfaces, 2018, 10, 6124-6136.	8.0	359
2	Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 9184-9194.	8.0	332
3	Inspired by <i>Stenocara</i> Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation. ACS Nano, 2017, 11, 760-769.	14.6	259
4	Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chemical Engineering Journal, 2016, 301, 249-256.	12.7	162
5	Underwater superoleophobic mesh based on BiVO 4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation. Chemical Engineering Journal, 2017, 320, 342-351.	12.7	136
6	Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry. Chemical Engineering Journal, 2018, 332, 150-159.	12.7	116
7	Droplet Motion on a Shape Gradient Surface. Langmuir, 2017, 33, 4172-4177.	3.5	100
8	Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chemical Engineering Journal, 2017, 307, 803-811.	12.7	99
9	Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose. Journal of Hazardous Materials, 2021, 402, 123774.	12.4	91
10	A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chemical Engineering Journal, 2019, 370, 1218-1227.	12.7	88
11	Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chemical Engineering Journal, 2021, 407, 125783.	12.7	86
12	HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 222-229.	4.7	81
13	Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation. Applied Surface Science, 2017, 396, 566-573.	6.1	65
14	Matchstick-Like Cu ₂ S@Cu _{<i>x</i>} O Nanowire Film: Transition of Superhydrophilicity to Superhydrophobicity. Journal of Physical Chemistry C, 2017, 121, 19716-19726.	3.1	63
15	Fabrication of superhydrophilic PVDF membranes by one-step modification with eco-friendly phytic acid and polyethyleneimine complex for oil-in-water emulsions separation. Chemosphere, 2021, 264, 128395.	8.2	61
16	Opposite Superwetting Nickel Meshes for On-Demand and Continuous Oil/Water Separation. Industrial & Description of the Separation of the S	3.7	57
17	A durable superwetting clusters-inlayed mesh with high efficiency and flux for emulsion separation. Journal of Hazardous Materials, 2021, 403, 123620.	12.4	57
18	Ultrafast preparation of hydrophobic ZIF-67/copper mesh via electrodeposition and hydrophobization for oil/water separation and dyes adsorption. Separation and Purification Technology, 2021, 272, 118871.	7.9	57

#	Article	IF	Citations
19	Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil–water separation. Applied Surface Science, 2017, 416, 344-352.	6.1	55
20	Microwaveâ€Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation. Chemistry - an Asian Journal, 2020, 15, 3421-3427.	3.3	45
21	Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sensors and Actuators B: Chemical, 2021, 326, 128957.	7.8	45
22	A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants. Journal of Hazardous Materials, 2022, 424, 127543.	12.4	45
23	Highâ€Performance Freshwater Harvesting System by Coupling Solar Desalination and Fog Collection with Hierarchical Porous Microneedle Arrays. Advanced Functional Materials, 2022, 32, .	14.9	45
24	A novel superhydrophilic-underwater superoleophobic Cu 2 S coated copper mesh for efficient oil-water separation. Materials Letters, 2016, 182, 68-71.	2.6	43
25	Conversion of solid Cu2(OH)2CO3 into HKUST-1 metal-organic frameworks: Toward an under-liquid superamphiphobic surface. Surface and Coatings Technology, 2019, 363, 282-290.	4.8	41
26	A self-cleaning titanium mesh with underwater superoleophobicity for oil/water separation and aqueous pollutant degradation. Surface and Coatings Technology, 2017, 313, 55-62.	4.8	37
27	Natural polyphenol chemistry inspired organic-inorganic composite coating decorated PVDF membrane for oil-in-water emulsions separation. Materials Research Bulletin, 2020, 132, 110995.	5.2	36
28	Superwetting charged copper foams with long permeation channels for ultrafast emulsion separation and surfactant removal. Journal of Materials Chemistry A, 2021, 9, 13170-13181.	10.3	34
29	A cross-linked coating decorated mesh prepared by brush-painting method for oil-in-water emulsions separation. Materials Chemistry and Physics, 2020, 242, 122541.	4.0	30
30	Janus copper mesh with asymmetric wettability for on-demand oil/water separation and direction-independent fog collection. Journal of Environmental Chemical Engineering, 2021, 9, 105899.	6.7	28
31	Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol–Ene Click Chemistry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28576-28585.	8.0	26
32	Room-temperature fabrication of superhydrophobic covalent organic framework (COF) decorated cotton fabric for high-flux water-in-oil emulsion separation. Chemical Communications, 2021, 57, 11533-11536.	4.1	26
33	CuC2O4 nanoribbons on copper mesh with underwater superoleophobicity for oil/water separation. Materials Letters, 2016, 185, 403-406.	2.6	22
34	Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–Ag complex. Journal of the Textile Institute, 2020, 111, 855-861.	1.9	20
35	A superwetting stainless steel mesh with Janus surface charges for efficient emulsion separation. Journal of Hazardous Materials, 2022, 430, 128378.	12.4	18
36	ZrO2-coated stainless steel mesh with underwater superoleophobicity by electrophoretic deposition for durable oil/water separation. Journal of Sol-Gel Science and Technology, 2018, 85, 23-30.	2.4	17

#	Article	IF	CITATIONS
37	Gate-Embedding Strategy for Pore Size Manipulation on Stainless Steel Mesh: Toward Highly Efficient Water-in-Oil Nanoemulsions Separation. Industrial & Engineering Chemistry Research, 2019, 58, 15288-15296.	3.7	16
38	Catalytic activity and stability of Cu modified ZSM-5 zeolite membrane catalysts prepared by metal-organic chemical vapor deposition for trichloroethylene oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109, 103-110.	5.3	10
39	ZIF-L(Co) coated stainless steel meshes with superwettability for efficient multiphase liquid separation. Journal of Environmental Chemical Engineering, 2021, 9, 105325.	6.7	10
40	Effect of gradient wettability on capillary imbibition in open semicircular copper channel. Physics of Fluids, $2020,32,$.	4.0	10
41	Enhancement of compatibility between covalent organic framework and polyamide membrane via an interfacial bridging method: Toward highly efficient water purification. Journal of Membrane Science, 2022, 656, 120590.	8.2	10
42	Strong Near-Infrared Solid Emission and Enhanced N-Type Mobility for Poly(naphthalene Diimide) Vinylene by a Random Polymerization Strategy. Macromolecules, 2019, 52, 8332-8338.	4.8	8
43	Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid. Mikrochimica Acta, 2019, 186, 795.	5.0	8
44	Stainless steel mesh coated with defect engineered ZIF-67 toward pH-switchable wettability and efficient organic liquids separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127950.	4.7	7
45	Stable Zr-UiO-67 constructed through polymeric network assisted post-synthetic modification and its wettability modulation. Chemical Communications, 2021, 57, 11021-11024.	4.1	6
46	Fog collection on a conical copper wire: effect of fog flow velocity and surface morphology. Micro and Nano Letters, 2018, 13, 1068-1070.	1.3	5
47	Directed motion of two-component droplets on wedge-shaped composite copper surfaces without back-end pinning. Microfluidics and Nanofluidics, 2020, 24, $1.$	2.2	3
48	Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals. Materials Research Express, 2018, 5, 015911.	1.6	2
49	Vinylene Flanked Naphtho[1,2- <i>c</i> :5,6- <i>c</i> 2]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. Macromolecules, 2022, 55, 331-337.	4.8	2