Terrence F Meehan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8129028/publications.pdf

Version: 2024-02-01

27 papers

3,122 citations

20 h-index 27 g-index

34 all docs

34 docs citations

times ranked

34

7571 citing authors

#	Article	lF	Citations
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
2	Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery, 2018, 17, 317-332.	46.4	263
3	The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Research, 2014, 42, D802-D809.	14.5	252
4	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
5	The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. Journal of Biomedical Semantics, 2016, 7, 44.	1.6	201
6	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
7	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
8	PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models. Cancer Research, 2017, 77, e62-e66.	0.9	92
9	CLO: The cell line ontology. Journal of Biomedical Semantics, 2014, 5, 37.	1.6	89
10	The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conservation Genetics, 2018, 19, 995-1005.	1.5	82
11	High-throughput mouse phenomics for characterizing mammalian gene function. Nature Reviews Genetics, 2018, 19, 357-370.	16.3	78
12	PDX Finder: A portal for patient-derived tumor xenograft model discovery. Nucleic Acids Research, 2019, 47, D1073-D1079.	14.5	75
13	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
14	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
15	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
16	PhenStat: A Tool Kit for Standardized Analysis of High Throughput Phenotypic Data. PLoS ONE, 2015, 10, e0131274.	2.5	51
17	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
18	High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.	14.5	32

#	Article	IF	CITATIONS
19	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
20	A mouse informatics platform for phenotypic and translational discovery. Mammalian Genome, 2015, 26, 413-421.	2.2	27
21	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy., 2022, 1, 157-173.		22
22	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
23	Ten simple rules for annotating sequencing experiments. PLoS Computational Biology, 2020, 16, e1008260.	3.2	12
24	OpenStats: A robust and scalable software package for reproducible analysis of high-throughput phenotypic data. PLoS ONE, 2020, 15, e0242933.	2.5	12
25	The EurOPDX Data Portal: an open platform for patient-derived cancer xenograft data sharing and visualization. BMC Genomics, 2022, 23, 156.	2.8	10
26	Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics, 2020, 36, 1492-1500.	4.1	9
27	Know Thy PDX Model. Cancer Research, 2019, 79, 4324-4325.	0.9	4