List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81289/publications.pdf Version: 2024-02-01

H S POREV

#	Article	IF	CITATIONS
1	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
2	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
3	Use of computer vision for analysis of image datasets from high temperature plasma experiments. Review of Scientific Instruments, 2021, 92, 033532.	1.3	8
4	Fuel convergence sensitivity in indirect drive implosions. Physics of Plasmas, 2021, 28, 042705.	1.9	11
5	Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .	1.9	55
6	Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility. Physical Review Letters, 2021, 126, 025002.	7.8	40
7	Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. Plasma Physics and Controlled Fusion, 2020, 62, 014007.	2.1	31
8	Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	22
9	A simple model to scope out parameter space for indirect drive designs on NIF. Physics of Plasmas, 2020, 27, .	1.9	14
10	Radiation driven Hohlraum using 2ï‰ for ICF implosions at the NIF. Physics of Plasmas, 2020, 27, 082708.	1.9	2
11	Symmetric fielding of the largest diamond capsule implosions on the NIF. Physics of Plasmas, 2020, 27, .	1.9	28
12	Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	50
13	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
14	Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 2019, 26, .	1.9	70
15	The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	43
16	Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly driven implosions on NIF. Physics of Plasmas, 2018, 25, 082705.	1.9	15
17	Improving ICF implosion performance with alternative capsule supports. Physics of Plasmas, 2017, 24, .	1.9	54
18	Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	31

#	Article	IF	CITATIONS
19	The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Physics of Plasmas, 2017, 24, .	1.9	49
20	Indirect drive ignition at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014021.	2.1	64
21	First beryllium capsule implosions on the National Ignition Facility. Physics of Plasmas, 2016, 23, 056310.	1.9	37
22	Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims. Physics of Plasmas, 2016, 23, 072707.	1.9	20
23	Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	162
24	Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Physics of Plasmas, 2016, 23, 056303.	1.9	38
25	Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	27
26	Integrated modeling of cryogenic layered highfoot experiments at the NIF. Physics of Plasmas, 2016, 23,	1.9	59
27	Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12, 800-806.	16.7	144
28	Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums. Physical Review Letters, 2016, 116, 075003.	7.8	45
29	First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters, 2015, 114, 175001.	7.8	117
30	Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility. Physical Review Letters, 2015, 114, 145004.	7.8	56
31	Instability growth seeded by oxygen in CH shells on the National Ignition Facility. Physics of Plasmas, 2015, 22, .	1.9	46
32	Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Physics of Plasmas, 2015, 22, .	1.9	120
33	Adiabat-shaping in indirect drive inertial confinement fusion. Physics of Plasmas, 2015, 22, 052702.	1.9	31
34	Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility. Physical Review Letters, 2015, 115, 055001.	7.8	101
35	Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive. Physics of Plasmas, 2015, 22, .	1.9	40
36	A survey of pulse shape options for a revised plastic ablator ignition design. Physics of Plasmas, 2014, 21, .	1.9	50

#	Article	IF	CITATIONS
37	Progress in hohlraum physics for the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	62
38	Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF. Physics of Plasmas, 2014, 21, 022703.	1.9	27
39	Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	81
40	High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility. Physical Review Letters, 2014, 112, 055001.	7.8	199
41	The high-foot implosion campaign on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	149
42	Progress towards ignition on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	259
43	Measurement of High-Pressure Shock Waves in Cryogenic Deuterium-Tritium Ice Layered Capsule Implosions on NIF. Physical Review Letters, 2013, 111, 065003.	7.8	28
44	Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions. Physical Review Letters, 2013, 111, 085004.	7.8	215
45	Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility. Physical Review Letters, 2013, 111, 235001.	7.8	44
46	X-ray driven implosions at ignition relevant velocities on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	54
47	Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Physics of Plasmas, 2013, 20, 056318.	1.9	128
48	Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.	1.9	65
49	The effect of laser pulse shape variations on the adiabat of NIF capsule implosions. Physics of Plasmas, 2013, 20, .	1.9	40
50	Implosion dynamics measurements at the National Ignition Facility. Physics of Plasmas, 2012, 19, .	1.9	125
51	Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 2012, 19, .	1.9	115
52	A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Physics of Plasmas, 2012, 19, .	1.9	108
53	Progress in the indirect-drive National Ignition Campaign. Plasma Physics and Controlled Fusion, 2012, 54, 124026.	2.1	38
54	Precision Shock Tuning on the National Ignition Facility. Physical Review Letters, 2012, 108, 215004.	7.8	83

#	Article	IF	CITATIONS
55	The velocity campaign for ignition on NIF. Physics of Plasmas, 2012, 19, .	1.9	76
56	Capsule implosion optimization during the indirect-drive National Ignition Campaign. Physics of Plasmas, 2011, 18, .	1.9	131
57	Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, 2011, 18, .	1.9	534
58	Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow. Physics of Plasmas, 2007, 14, 056505.	1.9	19
59	Experimental Investigation of the Three-Dimensional Interaction of a Strong Shock with a Spherical Density Inhomogeneity. Physical Review Letters, 2002, 89, 085001.	7.8	39