Xinya Hemu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8128684/publications.pdf Version: 2024-02-01

XINVA HEMIL

#	Article	IF	CITATIONS
1	Asparaginyl Endopeptidase-Mediated Protein C-Terminal Hydrazinolysis for the Synthesis of Bioconjugates. Bioconjugate Chemistry, 2022, 33, 238-247.	1.8	6
2	Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. International Journal of Molecular Sciences, 2022, 23, 458.	1.8	5
3	Hololectin Interdomain Linker Determines Asparaginyl Endopeptidase-Mediated Maturation of Antifungal Hevein-Like Peptides in Oats. Frontiers in Plant Science, 2022, 13, .	1.7	10
4	PAL-Mediated Ligation for Protein and Cell-Surface Modification. Methods in Molecular Biology, 2022, , 177-193.	0.4	3
5	Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization. RSC Advances, 2021, 11, 23105-23112.	1.7	12
6	pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases. Journal of the American Chemical Society, 2021, 143, 8704-8712.	6.6	25
7	N γ â€Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angewandte Chemie, 2021, 133, 22381-22385.	1.6	1
8	N γ â€Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angewandte Chemie - International Edition, 2021, 60, 22207-22211.	7.2	5
9	Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics, 2021, 11, 5863-5875.	4.6	17
10	Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Frontiers in Chemistry, 2021, 9, 768854.	1.8	3
11	The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme. Journal of Biological Chemistry, 2021, 297, 101325.	1.6	9
12	Immobilized Peptide Asparaginyl Ligases Enhance Stability and Facilitate Macrocyclization and Site-Specific Ligation. Journal of Organic Chemistry, 2020, 85, 1504-1512.	1.7	19
13	Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catalysis, 2020, 10, 8825-8834.	5.5	29
14	Peptide asparaginyl ligases—renegade peptide bond makers. Science China Chemistry, 2020, 63, 296-307.	4.2	19
15	Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 2019, 62, 610-619.	8.2	99
16	Structural determinants for peptide-bond formation by asparaginyl ligases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11737-11746.	3.3	81
17	Ligase-Controlled Cyclo-oligomerization of Peptides. Organic Letters, 2019, 21, 2029-2032.	2.4	13
18	Pulsed SILAC-based proteomic analysis unveils hypoxia- and serum starvation-induced <i>de novo</i> protein synthesis with PHD finger protein 14 (PHF14) as a hypoxia sensitive epigenetic regulator in cell cycle progression. Oncotarget, 2019, 10, 2136-2150.	0.8	19

Хілуа Неми

#	Article	IF	CITATIONS
19	One-Pot Dual Labeling of IgG 1 and Preparation of C-to-C Fusion Proteins Through a Combination of Sortase A and Butelase 1. Bioconjugate Chemistry, 2018, 29, 3245-3249.	1.8	72
20	Immobilization and Intracellular Delivery of Circular Proteins by Modifying a Genetically Incorporated Unnatural Amino Acid. Bioconjugate Chemistry, 2018, 29, 2170-2175.	1.8	22
21	Engineering a Catalytically Efficient Recombinant Protein Ligase. Journal of the American Chemical Society, 2017, 139, 5351-5358.	6.6	153
22	Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelaseâ€1. Angewandte Chemie - International Edition, 2017, 56, 7822-7825.	7.2	63
23	An Orally Active Bradykinin B ₁ Receptor Antagonist Engineered as a Bifunctional Chimera of Sunflower Trypsin Inhibitor. Journal of Medicinal Chemistry, 2017, 60, 504-510.	2.9	39
24	Bleogens: Cactus-Derived Anti-Candida Cysteine-Rich Peptides with Three Different Precursor Arrangements. Frontiers in Plant Science, 2017, 8, 2162.	1.7	30
25	Macrocyclic Antimicrobial Peptides Engineered from ω-Conotoxin. Current Pharmaceutical Design, 2017, 23, 2131-2138.	0.9	21
26	Immunostimulating and Gramâ€negativeâ€specific antibacterial cyclotides from the butterfly pea (<i>Clitoria ternatea</i>). FEBS Journal, 2016, 283, 2067-2090.	2.2	49
27	Butelase-mediated cyclization and ligation of peptides and proteins. Nature Protocols, 2016, 11, 1977-1988.	5.5	95
28	Butelaseâ€Mediated Macrocyclization of <scp>d</scp> â€Aminoâ€Acidâ€Containing Peptides. Angewandte Chemie - International Edition, 2016, 55, 12802-12806.	7.2	82
29	Butelase-Mediated Ligation as an Efficient Bioconjugation Method for the Synthesis of Peptide Dendrimers. Bioconjugate Chemistry, 2016, 27, 2592-2596.	1.8	40
30	A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Scientific Reports, 2016, 6, 23005.	1.6	48
31	Total Synthesis of Circular Bacteriocins by Butelase 1. Journal of the American Chemical Society, 2016, 138, 6968-6971.	6.6	90
32	Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues. Molecular Brain, 2016, 9, 20.	1.3	30
33	Quantitative analysis and comparison of four major flavonol glycosides in the leaves of Toona sinensis (A. Juss.) roemer (chinese toon) from various origins by high-performance liquid chromatography-diode array detector and hierarchical clustering analysis. Pharmacognosy Magazine, 2016. 12. 270.	0.3	11
34	A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection. International Journal of Nanomedicine, 2015, 10, 4947.	3.3	35
35	Butelase 1: A Versatile Ligase for Peptide and Protein Macrocyclization. Journal of the American Chemical Society, 2015, 137, 15398-15401.	6.6	147
36	Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation. Chemical Communications, 2015, 51, 17289-17292.	2.2	68

Χινγά Ηεμυ

#	Article	IF	CITATIONS
37	Selective Biâ€directional Amide Bond Cleavage of <i>N</i> â€Methylcysteinyl Peptide. European Journal of Organic Chemistry, 2014, 2014, 4370-4380.	1.2	5
38	Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nature Chemical Biology, 2014, 10, 732-738.	3.9	348
39	Peptide macrocyclization through amide-to-amide transpeptidation. Tetrahedron, 2014, 70, 7707-7713.	1.0	6
40	Biomimetic synthesis of cyclic peptides using novel thioester surrogates. Biopolymers, 2013, 100, 492-501.	1.2	36
41	A Thioethylalkylamido (TEA) Thioester Surrogate in the Synthesis of a Cyclic Peptide via a Tandem Acyl Shift. Organic Letters, 2013, 15, 2620-2623.	2.4	54
42	Discovery of Linear Cyclotides in Monocot Plant Panicum laxum of Poaceae Family Provides New Insights into Evolution and Distribution of Cyclotides in Plants. Journal of Biological Chemistry, 2013, 288, 3370-3380.	1.6	99
43	Novel Cyclotides and Uncyclotides with Highly Shortened Precursors from Chassalia chartacea and Effects of Methionine Oxidation on Bioactivities. Journal of Biological Chemistry, 2012, 287, 17598-17607.	1.6	72
44	Chemical Synthesis of Circular Proteins. Journal of Biological Chemistry, 2012, 287, 27020-27025.	1.6	59
45	Orally Active Peptidic Bradykinin B ₁ â€Receptor Antagonists Engineered from a Cyclotide Scaffold for Inflammatory Pain Treatment. Angewandte Chemie - International Edition, 2012, 51, 5620-5624.	7.2	208
46	Optimal Oxidative Folding of the Novel Antimicrobial Cyclotide from <i>Hedyotis biflora</i> Requires High Alcohol Concentrations. Biochemistry, 2011, 50, 7275-7283.	1.2	52
47	Discovery and Characterization of Novel Cyclotides Originated from Chimeric Precursors Consisting of Albumin-1 Chain a and Cyclotide Domains in the Fabaceae Family. Journal of Biological Chemistry, 2011, 286, 24275-24287.	1.6	153
48	Mimicking Reverse Protein Splicing by Three-Segment Tandem Peptide Ligation. Protein and Peptide Letters, 2005, 12, 743-749.	0.4	1
49	Shape-mimetics of G-protein-coupled receptors in therapeutic drug design and screening. Drug Development Research, 2004, 62, 336-348.	1.4	0
50	Correlations of Cationic Charges with Salt Sensitivity and Microbial Specificity of Cystine-stabilized β-Strand Antimicrobial Peptides. Journal of Biological Chemistry, 2002, 277, 50450-50456.	1.6	55
51	A Facile Ligation Approach to Prepare Three-Helix Bundles of HIV Fusion-State Protein Mimetics. Organic Letters, 2002, 4, 4167-4170.	2.4	25
52	Antimicrobial dendrimeric peptides. FEBS Journal, 2002, 269, 923-932.	0.2	208
53	Methods and strategies of peptide ligation. Biopolymers, 2001, 60, 194-205.	1.2	182
54	Membranolytic selectivity of cystine-stabilized cyclic protegrins. FEBS Journal, 2000, 267, 3289-3300.	0.2	69

Хілуа Неми

#	Article	IF	CITATIONS
55	Marked Increase in Membranolytic Selectivity of Novel Cyclic Tachyplesins Constrained with an Antiparallel Two-β Strand Cystine Knot Framework. Biochemical and Biophysical Research Communications, 2000, 267, 783-790.	1.0	47
56	Solid-Phase Synthesis of 1,2,3,4-Tetrahydro-β-carboline-Containing Peptidomimetics. Organic Letters, 2000, 2, 3075-3078.	2.4	27
57	Design of Salt-Insensitive Glycine-Rich Antimicrobial Peptides with Cyclic Tricystine Structuresâ€. Biochemistry, 2000, 39, 7159-7169.	1.2	31
58	Solvent assistance in regiospecific disulfide formation in dimethylsulfoxide. International Journal of Peptide Research and Therapeutics, 1999, 6, 265-273.	0.1	0
59	Solvent assistance in regiospecific disulfide formation in dimethylsulfoxide. International Journal of Peptide Research and Therapeutics, 1999, 6, 265-273.	0.1	10
60	Orthogonal ligation strategies for peptide and protein. , 1999, 51, 311-332.		136
61	Thia Zip Reaction for Synthesis of Large Cyclic Peptides:  Mechanisms and Applications. Journal of the American Chemical Society, 1999, 121, 4316-4324.	6.6	139
62	Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones. , 1998, 46, 319-327.		112
63	A biomimetic strategy in the synthesis and fragmentation of cyclic protein. Protein Science, 1998, 7, 1583-1592.	3.1	120
64	Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9184-9189.	3.3	99
65	Synthesis and Application of Unprotected Cyclic Peptides as Building Blocks for Peptide Dendrimers. Journal of the American Chemical Society, 1997, 119, 2363-2370.	6.6	197
66	Orthogonal coupling of unprotected peptide segments through histidyl amino terminus. Tetrahedron Letters, 1997, 38, 3-6.	0.7	61
67	Synthesis of large cyclic cystine-knot peptide by orthogonal coupling strategy using unprotected peptide precursor. Tetrahedron Letters, 1997, 38, 5599-5602.	0.7	87
68	Orthogonal Ligation of Unprotected Peptide Segments through Pseudoproline Formation for the Synthesis of HIV-1 Protease Analogs,. Journal of the American Chemical Society, 1996, 118, 307-312.	6.6	86
69	Acyl disulfide-mediated intramolecular acylation for orthogonal coupling between unprotected peptide segments. Mechanism and application. Tetrahedron Letters, 1996, 37, 933-936.	0.7	57
70	Specificity and formation of unusual amino acids of an amide ligation strategy for unprotected peptides. International Journal of Peptide and Protein Research, 1995, 45, 209-216.	0.1	24
71	Twoâ€step selective formation of three disulfide bridges in the synthesis of the Câ€terminal epidermal growth factorâ€like domain in human blood coagulation factor IX. Protein Science, 1994, 3, 1267-1275.	3.1	57
72	Chemical Ligation Approach To Form a Peptide Bond between Unprotected Peptide Segments. Concept and Model Study. Journal of the American Chemical Society, 1994, 116, 4149-4153.	6.6	176