Radim Ctvrtlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8128254/publications.pdf

Version: 2024-02-01

35	398	13 h-index	19
papers	citations		g-index
35	35	35	555
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. Journal of Materials Science, 2015, 50, 1553-1564.	1.7	40
2	Structure and mechanical properties of plasma sprayed coatings of titania and alumina. Journal of the European Ceramic Society, 2006, 26, 3509-3514.	2.8	33
3	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. Chemical Engineering Journal, 2017, 308, 745-753.	6.6	31
4	Mechanical and optical properties of SiO2 thin films deposited on glass. Chemical Papers, 2018, 72, 2143-2151.	1.0	30
5	Structure and properties of plasma sprayed BaTiO3 coatings. Ceramics International, 2010, 36, 2155-2162.	2.3	28
6	Effect of Nitrogen Doping and Temperature on Mechanical Durability of Silicon Carbide Thin Films. Scientific Reports, 2018, 8, 10428.	1.6	28
7	Hardness and elastic modulus of silicalite-1 crystal twins. Microporous and Mesoporous Materials, 2006, 94, 226-233.	2.2	25
8	Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition. Diamond and Related Materials, 2016, 69, 13-18.	1.8	20
9	On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study. Coatings, 2018, 8, 196.	1.2	19
10	TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance. Catalysts, 2018, 8, 25.	1.6	19
11	Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Askagen, Sweden. American Mineralogist, 2012, 97, 983-988.	0.9	17
12	Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement. Scientific Reports, 2017, 7, 6469.	1.6	16
13	Tribological Behavior of NiTi Alloy Produced by Spark Plasma Sintering Method. Coatings, 2021, 11, 1246.	1.2	14
14	Mechanical Properties and Microstructural Characterization of Amorphous SiC _{<i>x</i>} N _{<i>y</i>} Thin Films After Annealing Beyond 1100°C. Journal of the American Ceramic Society, 2016, 99, 996-1005.	1.9	12
15	High-Resolution Acoustic Emission Monitoring in Nanomechanics. Jom, 2019, 71, 3358-3367.	0.9	11
16	Theoretical and experimental revision of surface acoustic waves on the (100) plane of silicon. Scientific Reports, 2021, 11, 2845.	1.6	10
17	High frequency acoustic emission monitoring in nano-impact of alumina and partially stabilised zirconia. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139159.	2.6	8
18	<title>Pulsed laser welding of thin metals</title> ., 2004,,.		5

#	Article	IF	CITATIONS
19	Effect of deposition conditions on physical properties of sputtered silicon oxynitride thin films on float glass. International Journal of Applied Glass Science, 2018, 9, 403-412.	1.0	5
20	Nanoindentation-Induced Phase Transformation in Silicon Thin Films. Key Engineering Materials, 0, 586, 112-115.	0.4	4
21	Effect of Nitrogen Content on the Mechanical Properties of Amorphous SiCN Films. Key Engineering Materials, 2015, 662, 95-98.	0.4	4
22	The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter. Journal of Materials Research, 2022, 37, 1750-1761.	1,2	4
23	Utilization of Acoustic Emission in Scratch Test Evaluation. Key Engineering Materials, 0, 662, 119-122.	0.4	3
24	Tribological Properties of Magnetron Sputtered Amorphous Silicon Carbide and Silicon Carbonitride Coatings. Defect and Diffusion Forum, 2016, 368, 91-94.	0.4	3
25	Plastic instabilities explored via acoustic emission during spherical nanoindentation. Materials Science & Description of the Country of the	2.6	3
26	Mechanical properties of a-C, SiC and Ti-C: H films. International Journal of Materials Research, 2008, 99, 871-875.	0.1	2
27	Laser scanning confocal microscopy in materials engineering. Proceedings of SPIE, 2012, , .	0.8	1
28	Wear Behavior of Hard Dental Tissues and Restorative Materials. Applied Mechanics and Materials, 2013, 486, 72-77.	0.2	1
29	Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study. Applied Sciences (Switzerland), 2021, 11, 1727.	1.3	1
30	Physical Properties of Modern Reciprocal Endodontic Systems and Fatigue Failure Testing in Simulated Clinical Conditions. Applied Sciences (Switzerland), 2021, 11, 11160.	1.3	1
31	Pulsed laser welding of cylindrical profile. , 2005, 5777, 874.		0
32	Pulsed Nd:YAG laser beam profile analyse. , 2005, , .		0
33	Wear of Human Enamel and Dentin. Key Engineering Materials, 0, 606, 129-132.	0.4	0
34	High Temperature Nanoindentation Testing of Amorphous SiC and B ₄ C Thin Films. Defect and Diffusion Forum, 2016, 368, 115-118.	0.4	0
35	Multifunctional Properties of High-speed Highly Uniform Femtosecond Laser Patterning on Stainless steel. , 2017, , .		0