
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127965/publications.pdf Version: 2024-02-01

DETED ARRINK

#	Article	IF	CITATIONS
1	Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nature Medicine, 2022, 28, 1288-1296.	30.7	44
2	Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nature Communications, 2021, 12, 1474.	12.8	26
3	A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti–Zika Virus Vaccine. Annals of Internal Medicine, 2021, 174, 585-594.	3.9	44
4	Impact of prior Dengue immunity on Zika vaccine protection in rhesus macaques and mice. PLoS Pathogens, 2021, 17, e1009673.	4.7	7
5	Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nature Medicine, 2021, 27, 1718-1724.	30.7	39
6	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell, 2020, 183, 185-196.e14.	28.9	25
7	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	22.5	46
8	Origin of rebound virus in chronically SIV-infected Rhesus monkeys following treatment discontinuation. Nature Communications, 2020, 11, 5412.	12.8	9
9	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	12.6	789
10	Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines, 2020, 8, 307.	4.4	18
11	Sustained maternal antibody and cellular immune responses in pregnant women infected with Zika virus and mother to infant transfer of Zikaâ€specific antibodies. American Journal of Reproductive Immunology, 2020, 84, e13288.	1.2	7
12	Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C. Journal of Virology, 2020, 94, .	3.4	5
13	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	30.7	61
14	Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβRâ^'/â^' Mice. Cell Host and Microbe, 2019, 26, 591-600.e4.	11.0	26
15	Assessment of Immunogenicity and Efficacy of a Zika Vaccine Using Modified Vaccinia Ankara Virus as Carriers. Pathogens, 2019, 8, 216.	2.8	9
16	Lack of therapeutic efficacy of an antibody to α ₄ β ₇ in SIVmac251-infected rhesus macaques. Science, 2019, 365, 1029-1033.	12.6	31
17	Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathogens, 2019, 15, e1008180.	4.7	10
18	NS1 DNA vaccination protects against Zika infection through T cell–mediated immunity in immunocompetent mice. Science Advances, 2019, 5, eaax2388.	10.3	64

#	Article	IF	CITATIONS
19	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
20	First-in-Human Randomized, Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector. Journal of Infectious Diseases, 2018, 218, 633-644.	4.0	35
21	Rapid Cloning of Novel Rhesus Adenoviral Vaccine Vectors. Journal of Virology, 2018, 92, .	3.4	24
22	Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. Journal of Virology, 2018, 92, .	3.4	24
23	Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell, 2018, 173, 1111-1122.e10.	28.9	104
24	Immunogenicity and Cross-Reactivity of Rhesus Adenoviral Vectors. Journal of Virology, 2018, 92, .	3.4	7
25	Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet, The, 2018, 391, 563-571.	13.7	165
26	Prevention of SIVmac251 reservoir seeding in rhesus monkeys by early antiretroviral therapy. Nature Communications, 2018, 9, 5429.	12.8	49
27	First-in-human randomized controlled trial of an oral, replicating adenovirus 26 vector vaccine for HIV-1. PLoS ONE, 2018, 13, e0205139.	2.5	32
28	Combined HDAC and BET Inhibition Enhances Melanoma Vaccine Immunogenicity and Efficacy. Journal of Immunology, 2018, 201, 2744-2752.	0.8	11
29	Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563, 360-364.	27.8	246
30	Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nature Communications, 2018, 9, 2441.	12.8	69
31	Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PLoS ONE, 2018, 13, e0202820.	2.5	45
32	Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nature Medicine, 2018, 24, 721-723.	30.7	46
33	Zika virus vaccines. Nature Reviews Microbiology, 2018, 16, 594-600.	28.6	98
34	Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell, 2017, 169, 610-620.e14.	28.9	191
35	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	40
36	Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys. Nature Communications, 2017, 8, 15740.	12.8	11

#	Article	IF	CITATIONS
37	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	12.4	106
38	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	12.4	87
39	Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	38
40	Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Science Translational Medicine, 2017, 9, .	12.4	108
41	Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathogens, 2017, 13, e1006487.	4.7	129
42	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	12.6	348
43	Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353, 1129-1132.	12.6	461
44	Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science, 2016, 353, 1045-1049.	12.6	129
45	Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. Journal of Immunology, 2016, 197, 1809-1822.	0.8	41
46	Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature, 2016, 540, 284-287.	27.8	246
47	Adenovirus serotype 5 vaccine vectors trigger IL-27–dependent inhibitory CD4 ⁺ T cell responses that impair CD8 ⁺ T cell function. Science Immunology, 2016, 1, .	11.9	16
48	Vaccine protection against Zika virus from Brazil. Nature, 2016, 536, 474-478.	27.8	460
49	Production of Mucosally Transmissible SHIV Challenge Stocks from HIV-1 Circulating Recombinant Form 01_AE env Sequences. PLoS Pathogens, 2016, 12, e1005431.	4.7	18
50	Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization. Vaccine Journal, 2015, 22, 1166-1175.	3.1	8
51	Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science, 2015, 349, 320-324.	12.6	303
52	Induction of HIV-1–Specific Mucosal Immune Responses Following Intramuscular Recombinant Adenovirus Serotype 26 HIV-1 Vaccination of Humans. Journal of Infectious Diseases, 2015, 211, 518-528.	4.0	60
53	Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors. Journal of Virology, 2015, 89, 1512-1522.	3.4	47
54	First-in-Human Evaluation of a Hexon Chimeric Adenovirus Vector Expressing HIV-1 Env (IPCAVD 002). Journal of Infectious Diseases, 2014, 210, 1052-1061.	4.0	25

#	Article	IF	CITATIONS
55	Protective Efficacy of a Global HIV-1 Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys. Cell, 2013, 155, 531-539.	28.9	334
56	Characterization of Humoral and Cellular Immune Responses Elicited by a Recombinant Adenovirus Serotype 26 HIV-1 Env Vaccine in Healthy Adults (IPCAVD 001). Journal of Infectious Diseases, 2013, 207, 248-256.	4.0	98
57	Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature, 2012, 482, 89-93.	27.8	452
58	Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature, 2009, 457, 87-91.	27.8	433
59	Magnitude and Phenotype of Cellular Immune Responses Elicited by Recombinant Adenovirus Vectors and Heterologous Prime-Boost Regimens in Rhesus Monkeys. Journal of Virology, 2008, 82, 4844-4852.	3.4	113
60	Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D. Journal of Virology, 2007, 81, 4654-4663.	3.4	429
61	Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature, 2006, 441, 239-243.	27.8	432