
Michael G Tordoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity in C57BL/6J mice fed diets differing in carbohydrate and fat but not energy content. Physiology and Behavior, 2022, 243, 113644.	1.0	5
2	Genetics of mouse behavioral and peripheral neural responses to sucrose. Mammalian Genome, 2021, 32, 51-69.	1.0	2
3	Genetic controls of Tas1r3-independent sucrose consumption in mice. Mammalian Genome, 2021, 32, 70-93.	1.0	2
4	Understanding the evolution of nutritive taste in animals: Insights from biological stoichiometry and nutritional geometry. Ecology and Evolution, 2021, 11, 8441-8455.	0.8	13
5	CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron, 2018, 98, 547-561.e10.	3.8	137
6	The Taste of Caffeine. Journal of Caffeine Research, 2017, 7, 39-52.	1.0	29
7	Does eating good-tasting food influence body weight?. Physiology and Behavior, 2017, 170, 27-31.	1.0	13
8	CALHM1-Mediated ATP Release and Ciliary Beat Frequency Modulation in Nasal Epithelial Cells. Scientific Reports, 2017, 7, 6687.	1.6	34
9	Phosphorus Taste Involves T1R2 and T1R3. Chemical Senses, 2017, 42, 425-433.	1.1	13
10	ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB Journal, 2016, 30, 3489-3500.	0.2	30
11	Genetics of Amino Acid Taste and Appetite. Advances in Nutrition, 2016, 7, 806S-822S.	2.9	64
12	Maltodextrin Acceptance and Preference in Eight Mouse Strains. Chemical Senses, 2016, 41, 45-52.	1.1	12
13	Low-calcium diet prevents fructose-induced hyperinsulinemia and ameliorates the response to glucose load in rats. Nutrition and Metabolism, 2015, 12, 38.	1.3	7
14	Normal Taste Acceptance and Preference of PANX1 Knockout Mice. Chemical Senses, 2015, 40, 453-459.	1.1	26
15	Bursting by taste-responsive cells in the rodent brain stem. Journal of Neurophysiology, 2015, 113, 2434-2446.	0.9	2
16	Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3. Chemical Senses, 2015, 40, 53-59.	1.1	5
17	Taste Hedonics Influence the Disposition of Fat by Modulating Gastric Emptying in Rats. PLoS ONE, 2014, 9, e90717.	1.1	3
18	Salty Taste Deficits in CALHM1 Knockout Mice. Chemical Senses, 2014, 39, 515-528.	1.1	38

#	Article	IF	CITATIONS
19	Macronutrient selection by seven inbred mouse strains and three taste-related knockout strains. Physiology and Behavior, 2014, 135, 49-54.	1.0	6
20	Influence of estrous and circadian cycles on calcium intake of the rat. Physiology and Behavior, 2013, 112-113, 56-60.	1.0	1
21	Influence of cross-fostering on preference for calcium chloride in C57BL/6J and PWK/PhJ mice. Physiology and Behavior, 2013, 122, 159-162.	1.0	Ο
22	CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature, 2013, 495, 223-226.	13.7	405
23	Taste dysfunction in BTBR mice due to a mutation of <i>ltpr3</i> , the inositol triphosphate receptor 3 gene. Physiological Genomics, 2013, 45, 834-855.	1.0	23
24	Itpr3 Is Responsible for the Mouse Tufted (tf) Locus. Journal of Heredity, 2013, 104, 295-297.	1.0	6
25	QTL Analysis of Dietary Obesity in C57BL/6byj X 129P3/J F2 Mice: Diet- and Sex-Dependent Effects. PLoS ONE, 2013, 8, e68776.	1.1	21
26	Genetic Analysis of Chemosensory Traits in Human Twins. Chemical Senses, 2012, 37, 869-881.	1.1	82
27	T1R3: A human calcium taste receptor. Scientific Reports, 2012, 2, 496.	1.6	66
28	No effects of monosodium glutamate consumption on the body weight or composition of adult rats and mice. Physiology and Behavior, 2012, 107, 338-345.	1.0	25
29	Chorda tympani nerve modulates the rat's avoidance of calcium chloride. Physiology and Behavior, 2012, 105, 1214-1218.	1.0	4
30	Macronutrient choice of BTBR.NZW mice congenic for a 21-gene region of chromosome 17. Physiology and Behavior, 2012, 106, 556-561.	1.0	5
31	Comparison of differences between PWD/PhJ and C57BL/6J mice in calcium solution preferences and chorda tympani nerve responses. Physiology and Behavior, 2011, 102, 496-502.	1.0	8
32	Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats. Physiology and Behavior, 2011, 103, 523-529.	1.0	27
33	Taste Solution Consumption by FHH-Chr nBN Consomic Rats. Chemical Senses, 2010, 35, 473-489.	1.1	6
34	Glutamate taste and appetite in laboratory mice: physiologic and genetic analyses. American Journal of Clinical Nutrition, 2009, 90, 756S-763S.	2.2	48
35	Pica as an adaptive response: Kaolin consumption helps rats recover from chemotherapy-induced illness. Physiology and Behavior, 2009, 97, 87-90.	1.0	52
36	Vegetable bitterness is related to calcium content. Appetite, 2009, 52, 498-504.	1.8	29

#	Article	IF	CITATIONS
37	Reduced body weight is a common effect of gene knockout in mice. BMC Genetics, 2008, 9, 4.	2.7	85
38	Calcium taste preferences: genetic analysis and genome screen of C57BL/6Jâ€f×â€fPWK/PhJ hybrid mice. Gene Brain and Behavior, 2008, 7, 618-628.	25, 1.1	25
39	Gene discovery and the genetic basis of calcium consumption. Physiology and Behavior, 2008, 94, 649-659.	1.0	14
40	Preferences of 14 rat strains for 17 taste compounds. Physiology and Behavior, 2008, 95, 308-332.	1.0	93
41	Involvement of T1R3 in calcium-magnesium taste. Physiological Genomics, 2008, 34, 338-348.	1.0	73
42	Taste and acceptance of pyrophosphates by rats and mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R2159-R2167.	0.9	8
43	Taste Solution Preferences of C57BL/6J and 129X1/SvJ Mice: Influence of Age, Sex, and Diet. Chemical Senses, 2007, 32, 655-671.	1.1	32
44	Forty mouse strain survey of water and sodium intake. Physiology and Behavior, 2007, 91, 620-631.	1.0	67
45	Forty mouse strain survey of body composition. Physiology and Behavior, 2007, 91, 593-600.	1.0	100
46	Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content. Physiology and Behavior, 2007, 91, 632-643.	1.0	44
47	Genetic loci affecting body weight and fatness in a C57BL/6J × PWK/PhJ mouse intercross. Mammalian Genome, 2007, 18, 839-851.	1.0	14
48	Quantitative trait loci for individual adipose depot weights in C57BL/6ByJ x 129P3/J F2 mice. Mammalian Genome, 2006, 17, 1065-1077.	1.0	30
49	A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mammalian Genome, 2006, 17, 1078-1092.	1.0	18
50	The Case for a Calcium Appetite in Humans. , 2006, , 247-266.		1
51	No Relationship between Sequence Variation in Protein Coding Regions of the Tas1r3 Gene and Saccharin Preference in Rats. Chemical Senses, 2005, 30, 231-240.	1.1	25
52	Calcium deprivation increases the palatability of calcium solutions in rats. Physiology and Behavior, 2005, 84, 335-342.	1.0	28
53	Mice acquire flavor preferences during shipping. Physiology and Behavior, 2005, 86, 480-486.	1.0	10
54	Influence of the number of repellent-treated and untreated food or water containers on intake by the European starling. Appetite, 2005, 45, 81-85.	1.8	2

#	Article	IF	CITATIONS
55	Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice. Journal of Neuroscience, 2004, 24, 2296-2303.	1.7	84
56	Polymorphisms in the Taste Receptor Gene (Tas1r3) Region Are Associated with Saccharin Preference in 30 Mouse Strains. Journal of Neuroscience, 2004, 24, 938-946.	1.7	169
57	No effect of dietary calcium on body weight of lean and obese mice and rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R669-R677.	0.9	48
58	Loci on Chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F 2 intercross between the 129P3/J and C57BL/6ByJ mouse strains. Mammalian Genome, 2003, 14, 302-313.	1.0	49
59	Lesions of the subfornical organ decrease the calcium appetite of calcium-deprived rats. Physiology and Behavior, 2003, 79, 605-612.	1.0	10
60	Mouse Taste Preference Tests: Why Only Two Bottles?. Chemical Senses, 2003, 28, 315-324.	1.1	58
61	Voluntary Ethanol Consumption by Mice: Genome-Wide Analysis of Quantitative Trait Loci and Their Interactions in a C57BL/6ByJ x 129P3/J F2 Intercross. Genome Research, 2002, 12, 1257-1268.	2.4	52
62	Influence of Test Duration on the Sensitivity of the Two-bottle Choice Test. Chemical Senses, 2002, 27, 759-768.	1.1	37
63	Genetics of Sweet Taste. ACS Symposium Series, 2002, , 40-51.	0.5	1
64	Obesity by choice: the powerful influence of nutrient availability on nutrient intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1536-R1539.	0.9	51
65	Magnesium appetite in the rat. Appetite, 2002, 38, 29-38.	1.8	26
66	Intragastric calcium infusions support flavor preference learning by calcium-deprived rats. Physiology and Behavior, 2002, 76, 521-529.	1.0	14
67	Some failures of intragastric NaCl infusions to support flavor preference learning. Physiology and Behavior, 2002, 76, 511-519.	1.0	9
68	The Maintenance Diets of C57BL/6J and 129X1/SvJ Mice Influence Their Taste Solution Preferences: Implications for Large-Scale Phenotyping Projects. Journal of Nutrition, 2002, 132, 2288-2297.	1.3	47
69	Genetic, physical, and comparative map of the subtelomeric region of mouse Chromosome 4. Mammalian Genome, 2002, 13, 5-19.	1.0	18
70	Voluntary consumption of NaCl, KCl, CaCl2, and NH4Cl solutions by 28 mouse strains. Behavior Genetics, 2002, 32, 445-457.	1.4	72
71	Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behavior Genetics, 2002, 32, 435-443.	1.4	560
72	Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiology and Behavior, 2001, 72, 603-613.	1.0	109

#	Article	IF	CITATIONS
73	NaCl consumption is attenuated in female KCNE1 null mutant mice. Physiology and Behavior, 2001, 74, 267-276.	1.0	6
74	Calcium: Taste, Intake, and Appetite. Physiological Reviews, 2001, 81, 1567-1597.	13.1	154
75	Influence of oral and gastric NaCl preloads on NaCl intake and gastric emptying of sodium-deficient rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1152-R1160.	0.9	4
76	Calcium deprivation alters gustatory-evoked activity in the rat nucleus of the solitary tract. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R971-R978.	0.9	15
77	High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. Mammalian Genome, 2001, 12, 13-16.	1.0	114
78	Role of vagal afferent innervation in feeding and brain Fos expression produced by metabolic inhibitors. Brain Research, 2001, 919, 198-206.	1.1	32
79	Intake of Umami-Tasting Solutions by Mice: A Genetic Analysis. Journal of Nutrition, 2000, 130, 935S-941S.	1.3	67
80	Voluntary sodium chloride consumption by mice: differences among five inbred strains. Behavior Genetics, 1998, 28, 117-124.	1.4	55
81	Calcium Deficiency Alters Chorda Tympani Nerve Responses to Oral Calcium Chloride. Physiology and Behavior, 1998, 63, 297-303.	1.0	27
82	Modification of Behavioral and Neural Taste Responses to NaCl in C57BL/6 Mice. Physiology and Behavior, 1998, 65, 817-822.	1.0	14
83	Calcium-Deprived Rats Avoid Sweet Compounds. Journal of Nutrition, 1998, 128, 1232-1238.	1.3	16
84	Calcium intake by rats: influence of parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R214-R231.	0.9	11
85	Satiety from fat? Adverse effects of intestinal infusion of sodium oleate. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1779-R1785.	0.9	11
86	Heritable variation in food preferences and their contribution to obesity. Behavior Genetics, 1997, 27, 373-387.	1.4	175
87	Sucrose consumption in mice: Major influence of two genetic Loci affecting peripheral sensory responses. Mammalian Genome, 1997, 8, 545-548.	1.0	121
88	Some Basic Psychophysics of Calcium Salt Solutions. Chemical Senses, 1996, 21, 417-424.	1.1	64
89	Effect of chronic ouabain infusion on food, water, and nacl intake, body composition, and plasma hormones of sprague-dawley rats. Physiology and Behavior, 1996, 59, 87-92.	1.0	6
90	Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: A genetic analysis. Behavior Genetics, 1996, 26, 563-573.	1.4	127

#	Article	IF	CITATIONS
91	Ethanol Consumption and Taste Preferences in C57BL/6ByJ and 129/J Mice. Alcoholism: Clinical and Experimental Research, 1996, 20, 201-206.	1.4	158
92	The importance of calcium in the control of salt intake. Neuroscience and Biobehavioral Reviews, 1996, 20, 89-99.	2.9	16
93	Altered hepatic metabolic response to carbohydrate loads in rats with hepatic branch vagotomy or cholinergic blockade. Journal of the Autonomic Nervous System, 1994, 47, 255-261.	1.9	5
94	Different effects of three aldosterone treatments on plasma aldosterone and salt intake. Physiology and Behavior, 1993, 54, 129-134.	1.0	11
95	Learned preferences for the flavor of salted food. Physiology and Behavior, 1993, 54, 999-1004.	1.0	12
96	Experience with a macronutrient source influences subsequent macronutrient selection. Appetite, 1992, 18, 223-232.	1.8	19
97	Salt intake of rats fed diets deficient in calcium, iron, magnesium, phosphorus, potassium, or all minerals. Appetite, 1992, 18, 29-41.	1.8	29
98	Calcium deprivation increases NaCl intake of fischer-344 rats. Physiology and Behavior, 1991, 49, 113-115.	1.0	5
99	Sham-feeding sucrose or corn oil stimulates food intake in rats. Appetite, 1991, 17, 97-103.	1.8	16
100	Sham-feeding of corn oil by rats: Sensory and postingestive factors. Physiology and Behavior, 1990, 47, 779-781.	1.0	33
101	Oral stimulation with aspartame increases hunger. Physiology and Behavior, 1990, 47, 555-559.	1.0	83
102	Flavor preferences and fructose: Evidence that the liver detects the unconditioned stimulus for calorie-based learning. Appetite, 1990, 14, 29-44.	1.8	42
103	Drinking saccharin increases food intake and preference—II. Hydrational factors. Appetite, 1989, 12, 11-21.	1.8	24
104	Drinking saccharin increases food intake and preference—III. Sensory and associative factors. Appetite, 1989, 12, 23-36.	1.8	17
105	Dietary hyperphagia and obesity: What causes them?. Physiology and Behavior, 1989, 45, 163-168.	1.0	50
106	Drinking saccharin increases food intake and preference—I. Comparison with other drinks. Appetite, 1989, 12, 1-10.	1.8	35
107	Drinking saccharin increases food intake and preference—IV. Cephalic phase and metabolic factors. Appetite, 1989, 12, 37-56.	1.8	50
108	Contribution of fat metabolism to â€~glucoprivic' feeding produced by fourth ventricular 5-thio-d-glucose. Brain Research, 1988, 445, 216-221.	1.1	25

#	Article	IF	CITATIONS
109	How do non-nutritive sweeteners increase food intake?. Appetite, 1988, 11, 5-11.	1.8	26
110	Sodium depletion increases rats' preferences for salted food Behavioral Neuroscience, 1988, 102, 565-573.	0.6	20
111	Rats Eating Together Prefer the Taste of Their Food. Annals of the New York Academy of Sciences, 1987, 510, 263-264.	1.8	1
112	Food flavor preferences produced by drinking glucose and oil in normal and diabetic rats: Evidence for conditioning based on fuel oxidation. Physiology and Behavior, 1987, 41, 481-487.	1.0	57
113	Integrated metabolic control of food intake. Brain Research Bulletin, 1986, 17, 855-859.	1.4	155
114	Influence of sympathectomy on body weight of rats given chow or supermarket diets. Physiology and Behavior, 1985, 35, 455-463.	1.0	7
115	Meal patterns and glucoprivic feeding in the guanethidine-sympathectomized, adrenodemedullated rat. Physiology and Behavior, 1984, 32, 229-235.	1.0	8
116	Guanethidine sympathectomy does not prevent meal-induced increases in the weight or oxygen consumption of brown fat. Physiology and Behavior, 1984, 33, 975-979.	1.0	9
117	Influence of sympathectomy on the lateral hypothalamic lesion syndrome Behavioral Neuroscience, 1984, 98, 1039-1059.	0.6	18
118	Gastric mucosal damage induced by lateral hypothalamic lesions in rats: The potential contribution of bile. Brain Research Bulletin, 1983, 10, 441-444.	1.4	7
119	Effects of hepatic denervation on the anorexic response to epinephrine, amphetamine, and lithium chloride: A behavioral identification of glucostatic afferents Journal of Comparative and Physiological Psychology, 1982, 96, 361-375.	1.8	33
120	Hepatic vagotomy (partial hepatic denervation) does not alter ingestive responses to metabolic challenges. Physiology and Behavior, 1982, 28, 417-424.	1.0	49
121	A peripheral locus for amphetamine anorexia. Nature, 1982, 297, 148-150.	13.7	23