Shunta Nishioka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127784/publications.pdf

Version: 2024-02-01

623734 642732 24 783 14 23 citations g-index h-index papers 27 27 27 1161 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light. Angewandte Chemie, 2022, 134, .	2.0	2
2	Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light. Angewandte Chemie - International Edition, 2022, 61, e202204948.	13.8	15
3	Titelbild: Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light (Angew. Chem. 26/2022). Angewandte Chemie, 2022, 134, .	2.0	O
4	Control of the Photocatalytic Activity of Metastable Layered Oxynitride K ₂ LaTa ₂ O ₆ N through Topochemical Transformation of Tuned Oxide Precursors. Chemistry of Materials, 2021, 33, 6443-6452.	6.7	8
5	An Improved Z-Scheme for Overall Water Splitting Using Dye-Sensitized Calcium Niobate Nanosheets Synthesized by a Flux Method. ACS Applied Energy Materials, 2021, 4, 10145-10152.	5.1	12
6	<i>In situ</i> formation of a molecular cobalt(<scp>iii</scp>)/AgCl photocatalyst for visible-light water oxidation. Sustainable Energy and Fuels, 2021, 5, 5694-5698.	4.9	0
7	Excited Carrier Dynamics in a Dye-Sensitized Niobate Nanosheet Photocatalyst for Visible-Light Hydrogen Evolution. ACS Catalysis, 2021, 11, 659-669.	11.2	22
8	An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2020, 142, 8412-8420.	13.7	103
9	Solar Water Oxidation by a Visibleâ€Lightâ€Responsive Tantalum/Nitrogenâ€Codoped Rutile Titania Anode for Photoelectrochemical Water Splitting and Carbon Dioxide Fixation. ChemPhotoChem, 2019, 3, 37-45.	3.0	34
10	Enhanced water splitting through two-step photoexcitation by sunlight using tantalum/nitrogen-codoped rutile titania as a water oxidation photocatalyst. Sustainable Energy and Fuels, 2019, 3, 2337-2346.	4.9	14
11	An electronic structure governed by the displacement of the indium site in In–S ₆ octahedra: LnOInS ₂ (Ln = La, Ce, and Pr). Dalton Transactions, 2019, 48, 12272-12278.	3.3	8
12	Defect Density-Dependent Electron Injection from Excited-State Ru(II) Tris-Diimine Complexes into Defect-Controlled Oxide Semiconductors. Journal of Physical Chemistry C, 2019, 123, 28310-28318.	3.1	9
13	Solar-Driven Photoelectrochemical Water Oxidation over an n-Type Lead–Titanium Oxyfluoride Anode. Journal of the American Chemical Society, 2019, 141, 17158-17165.	13.7	38
14	Solar Water Oxidation by a Visible-Light-Responsive Tantalum/Nitrogen-Codoped Rutile Titania Anode for Photoelectrochemical Water Splitting and Carbon Dioxide Fixation. ChemPhotoChem, 2019, 3, 3-3.	3.0	1
15	Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba ₃ MoNbO _{8.5a^î(} . Journal of Materials Chemistry A, 2019, 7, 13910-13916.	10.3	44
16	Selective Synthesis and Photocatalytic Oxygen Evolution Activities of Tantalum/Nitrogen-Codoped Anatase, Brookite and Rutile Titanium Dioxide. Bulletin of the Chemical Society of Japan, 2019, 92, 1032-1038.	3.2	8
17	A zinc-based oxysulfide photocatalyst SrZn ₂ S ₂ O capable of reducing and oxidizing water. Dalton Transactions, 2019, 48, 15778-15781.	3.3	21
18	Crucial impact of reduction on the photocarrier dynamics of SrTiO ₃ powders studied by transient absorption spectroscopy. Journal of Materials Chemistry A, 2019, 7, 26139-26146.	10.3	21

#	Article	IF	CITATIONS
19	Effects of Interfacial Electron Transfer in Metal Complex–Semiconductor Hybrid Photocatalysts on Z-Scheme CO ₂ Reduction under Visible Light. ACS Catalysis, 2018, 8, 9744-9754.	11.2	60
20	Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting. Sustainable Energy and Fuels, 2018, 2, 2025-2035.	4.9	36
21	Water Splitting on Rutile TiO ₂ â€Based Photocatalysts. Chemistry - A European Journal, 2018, 24, 18204-18219.	3.3	142
22	Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 7190-7200.	11.2	34
23	Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. Journal of Materials Chemistry A, 2017, 5, 11710-11719.	10.3	101
24	Hydrothermal synthesis of rhodium-doped barium titanate nanocrystals for enhanced photocatalytic hydrogen evolution under visible light. RSC Advances, 2015, 5, 100123-100128.	3.6	23