T Domański

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127633/publications.pdf

Version: 2024-02-01

430754 526166 87 970 18 27 h-index g-index citations papers 87 87 87 448 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Dynamical quantum phase transitions in a mesoscopic superconducting system. Physical Review B, 2022, 105, .	1.1	9
2	Transient effects in a double quantum dot sandwiched laterally between superconducting and metallic leads. Physical Review B, $2021,103,.$	1.1	8
3	Quench dynamics of a correlated quantum dot sandwiched between normal-metal and superconducting leads. Physical Review B, 2021, 103, .	1.1	8
4	Subgap dynamics of double quantum dot coupled between superconducting and normal leads. Scientific Reports, 2021, 11, 11138.	1.6	8
5	Dynamical leakage of Majorana mode into side-attached quantum dot. Physical Review B, 2021, 103, .	1.1	7
6	Unconventional topological transitions in a self-organized magnetic ladder. Physical Review B, 2021, 103, .	1.1	4
7	How to measure the Majorana polarization of a topological planar Josephson junction. Physical Review B, 2020, 102, .	1.1	9
8	Leakage of Majorana mode into correlated quantum dot nearby its singlet-doublet crossover. Journal of Physics Condensed Matter, 2020, 32, 025302.	0.7	11
9	Statistical correlations of currents flowing through a proximized quantum dot. Physical Review B, 2020, 101, .	1.1	5
10	In-gap states of magnetic impurity in quantum spin Hall insulator proximitized to a superconductor. Journal of Physics Condensed Matter, 2020, 32, 235501.	0.7	2
11	Dimerization-induced topological superconductivity in a Rashba nanowire. Physical Review B, 2020, 101, .	1.1	9
12	Magnetic field effect on trivial and topological bound states of superconducting quantum dot. Journal of Physics Condensed Matter, 2020, 32, 445803.	0.7	2
13	Postquench Dynamics of Quantum Dot Proximitized to Superconducting Lead. Acta Physica Polonica A, 2020, 138, 691-694.	0.2	0
14	Quasiparticles of a periodically driven quantum dot coupled between superconducting and normal leads. Physical Review B, 2019, 100, .	1.1	7
15	Topological superconductivity at finite temperatures in proximitized magnetic nanowires. Physical Review B, 2019, 99, .	1.1	12
16	Delocalisation of Majorana quasiparticles in plaquette–nanowire hybrid system. Scientific Reports, 2019, 9, 12933.	1.6	11
17	Transient dynamics of a quantum dot embedded between two superconducting leads and a metallic reservoir. Physical Review B, 2019, 99, .	1.1	15
18	Interplay between correlations and Majorana mode in proximitized quantum dot. Scientific Reports, 2018, 8, 15717.	1.6	31

#	Article	IF	Citations
19	Interplay between pairing and correlations in spin-polarized bound states. Beilstein Journal of Nanotechnology, 2018, 9, 1370-1380.	1.5	2
20	Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices. Journal of Physics Condensed Matter, 2018, 30, 355602.	0.7	7
21	Buildup and transient oscillations of Andreev quasiparticles. Physical Review B, 2018, 98, .	1.1	13
22	Statistics of Tunneling Events in Three-Terminal Hybrid Devices with Quantum Dot. Acta Physica Polonica A, 2018, 133, 391-393.	0.2	4
23	Majorana quasiparticles of an inhomogeneous Rashba chain. Physical Review B, 2017, 95, .	1.1	20
24	Interplay between electron pairing and Dicke effect in triple quantum dot structures. Physical Review B, 2017, 95, .	1.1	12
25	Spin-sensitive interference due to Majorana state on the interface between normal and superconducting leads. Journal of Physics Condensed Matter, 2017, 29, 075603.	0.7	27
26	Josephson-phase-controlled interplay between correlation effects and electron pairing in a three-terminal nanostructure. Physical Review B, 2017, 95, .	1,1	24
27	Yu-Shiba-Rusinov states of impurities in a triangular lattice of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>NbSe </mml:mi> <mml:mn>2 <td>l:min⊅ <td>ml:2a3sub></td></td></mml:mn></mml:msub></mml:math>	l:min⊅ <td>ml:2a3sub></td>	ml :2a3 sub>
28	Controlling the bound states in a quantum-dot hybrid nanowire. Physical Review B, 2017, 96, .	1.1	76
29	Cooper Pair Splitting Efficiency in the Hybrid Three-Terminal Quantum Dot. Journal of Superconductivity and Novel Magnetism, 2017, 30, 135-138.	0.8	5
30	Polarization of the Majorana quasiparticles in the Rashba chain. Scientific Reports, 2017, 7, 16193.	1.6	20
31	Fluctuation conductivity due to the preformed local pairs. Low Temperature Physics, 2016, 42, 924-929.	0.2	0
32	Local and nonlocal thermopower in three-terminal nanostructures. Physical Review B, 2016, 93, .	1.1	18
33	Constructive influence of the induced electron pairing on the Kondo state. Scientific Reports, 2016, 6, 23336.	1.6	36
34	Quasiparticle states driven by a scattering on the preformed electron pairs. Condensed Matter Physics, 2016, 19, 13701.	0.3	0
35	QUANTUM TRANSPORT IN HYBRID NANOSTRUCTURES. , 2015, , .		0
36	Novel non-local effects in three-terminal hybrid devices with quantum dot. Scientific Reports, 2015, 5, 14572.	1.6	12

#	Article	IF	CITATIONS
37	Fano-type resonances induced by a boson mode in Andreev conductance. Chinese Physics B, 2015, 24, 017304.	0.7	10
38	Enhancements of the Andreev conductance due to emission/absorption of bosonic quanta. Journal of Physics Condensed Matter, 2015, 27, 305302.	0.7	11
39	Andreev Spectroscopy in Three-Terminal Hybrid Nanostructure. Acta Physica Polonica A, 2015, 127, 293-295.	0.2	1
40	Tunable interplay between superconductivity and correlations in nanoscopic heterostructures. Philosophical Magazine, 2015, 95, 538-549.	0.7	2
41	Single Particle Excitation Spectrum of a Proximized Quantum Dot: The Flow Equation Study. Acta Physica Polonica A, 2014, 126, A-137-A-140.	0.2	1
42	Phonon Signatures of a Quantum Impurity with Induced Electron Pairing. Acta Physica Polonica A, 2014, 126, A-73-A-76.	0.2	0
43	In-gap states of a quantum dot coupled between a normal and a superconducting lead. Journal of Physics Condensed Matter, 2013, 25, 435305.	0.7	43
44	Interplay between direct and crossed Andreev reflections in hybrid nanostructures. Physical Review B, 2013, 88, .	1.1	22
45	Decoherence effect on Fano line shapes in double quantum dots coupled between normal and superconducting leads. Physical Review B, 2012, 85, .	1.1	20
46	Interplay between the Correlations and Superconductivity in Electron Transport through the Double Quantum Dots. Acta Physica Polonica A, 2012, 121, 1213-1215.	0.2	3
47	Interference Effects on Double Quantum Dots Coupled Between Metallic and Superconducting Leads. Acta Physica Polonica A, 2012, 121, 812-815.	0.2	2
48	Electromagnetic Response of the BCS Superconductor: Flow Equation Approach. Acta Physica Polonica A, 2012, 121, 854-857.	0.2	1
49	Renormalization Group Approach for the Double Exchange Ferromagnets. Acta Physica Polonica A, 2012, 122, 1099-1101.	0.2	0
50	Fano-type interference in quantum dots coupled between metallic and superconducting leads. Physical Review B, 2011, 84, .	1.1	47
51	Spectroscopic Bogoliubov features near the unitary limit. Physical Review A, 2011, 84, .	1.0	4
52	Flow equation approach to the linear response theory of superconductors. Physical Review B, 2011, 84, .	1.1	6
53	Particle-hole mixing driven by the superconducting fluctuations. European Physical Journal B, 2010, 74, 437-445.	0.6	2
54	Boson-fermion duality and metastability in cuprate superconductors. Physical Review B, 2010, 81, .	1.1	11

#	Article	IF	Citations
55	Real space inhomogeneities in high temperature superconductors: the perspective of the two-component model. Journal of Physics Condensed Matter, 2010, 22, 255702.	0.7	8
56	Inhomogeneities in Superconductors Described by the Two-Component Model. Acta Physica Polonica A, 2010, 118, 360-363.	0.2	1
57	On Realization of the Bose-Einstein Condensates and Quantum Superfluids. Acta Physica Polonica A, 2010, 118, 204-211.	0.2	1
58	Electron pair current through the correlated quantum dot. Physica Status Solidi (B): Basic Research, 2009, 246, 985-988.	0.7	0
59	Meservey-Tedrow-Fulde effect in a quantum dot embedded between metallic and superconducting electrodes. Physical Review B, 2008, 78, .	1.1	33
60	Interplay between particle-hole splitting and the Kondo effect in quantum dots. Physical Review B, 2008, 78, .	1.1	49
61	Real Space Bogoliubov-de Gennes Equations Study of the Boson-Fermion Model. Acta Physica Polonica A, 2008, 114, 165-169.	0.2	5
62	The In-Gap Charge Current through the Correlated Quantum Dot Hybridized with Superconductor. Acta Physica Polonica A, 2008, 114, 75-82.	0.2	3
63	RENORMALIZATION GROUP APPROACH TO THE PAIRING INSTABILITIES. International Journal of Modern Physics E, 2007, 16, 263-274.	0.4	2
64	Influence of pair coherence on charge tunneling through a quantum dot connected to a superconducting lead. Physical Review B, 2007, 76, .	1.1	40
65	Influence of the correlation effects on charge transport through quantum dots. Physica Status Solidi (B): Basic Research, 2007, 244, 2437-2442.	0.7	0
66	Tunneling through the Quantum Dot Coupled to Incoherent Superconductor. Acta Physica Polonica A, 2007, 111, 671-682.	0.2	2
67	Tunneling through the Quantum Dot Coupled between Normal and Superconducting Leads. Acta Physica Polonica A, 2007, 112, 157-160.	0.2	2
68	Quantum fluctuations of ultracold atom-molecule mixtures. Physica Status Solidi (B): Basic Research, 2006, 243, 98-102.	0.7	1
69	Ultracold atom superfluidity induced by the Feshbach resonance. Physica Status Solidi (B): Basic Research, 2005, 242, 398-403.	0.7	1
70	Remnant superfluid collective phase oscillations in the normal state of systems with resonant pairing. Physical Review B, 2004, 70, .	1.1	10
71	Interplay between single-particle and collective features in the boson fermion model. Physical Review B, 2004, 70, .	1.1	20
72	Pseudogap and Other Precursor Signatures in the Systems with Local Fermion Pairs. Acta Physica Polonica A, 2004, 106, 553-560.	0.2	0

#	Article	IF	CITATIONS
73	Nature of correlations in the atomic limit of the boson fermion model. European Physical Journal B, 2003, 33, 41-45.	0.6	4
74	Thermodynamics and tunneling spectroscopy in the pseudogap regime of the boson–fermion model. Physica C: Superconductivity and Its Applications, 2003, 387, 77-81.	0.6	9
75	Feshbach resonance described by boson-fermion coupling. Physical Review A, 2003, 68, .	1.0	12
76	Bogoliubov Shadow Bands in the Normal State of Superconducting Systems with Strong Pair Fluctuations. Physical Review Letters, 2003, 91, 255301.	2.9	22
77	Effect of on-site Coulomb repulsion on superconductivity in the boson-fermion model. Physical Review B, 2002, 66, .	1.1	12
78	Effect of disorder on superconductivity in the boson-fermion model. Physical Review B, 2002, 66, .	1.1	10
79	Continuous canonical transformation for the double exchange model. European Physical Journal B, 2001, 23, 49-56.	0.6	1
80	Nonlinear feedback effects in coupled boson-fermion systems. Physical Review B, 2001, 63, .	1.1	49
81	The atomic limit of the Boson-Fermion model. Solid State Communications, 1998, 105, 473-477.	0.9	15
82	Superconductivity in a strongly correlated one-band system. Physical Review B, 1996, 54, 3058-3061.	1.1	4
83	SUPERCONDUCTIVITY WITH  η PAIRING': GAP PARAMETER AND SINGLE PARTICLE TUNNELING. Modern Phy Letters B, 1994, 08, 149-157.	sics 1.0	1
84	Hole superconductivity in Hubbard subbands. Physical Review B, 1994, 49, 12182-12187.	1.1	2
85	On NMR relaxation rate in anisotropic superconductors. Physica B: Condensed Matter, 1994, 194-196, 1593-1594.	1.3	0
86	On electromagnetic properties of superconductors in the "correlated hopping―model. Physica C: Superconductivity and Its Applications, 1993, 215, 97-104.	0.6	1
87	Electromagnetic response of anisotropic superconductors. Physical Review B, 1992, 45, 5005-5011.	1.1	7