T DomaÅ,„ski

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8127633/publications.pdf
Version: 2024-02-01


```
1 Dynamical quantum phase transitions in a mesoscopic superconducting system. Physical Review B,
2022, 105, .
2022, 105,
```

1.1

9

Transient effects in a double quantum dot sandwiched laterally between superconducting and
1.18 metallic leads. Physical Review B, 2021, 103, .

Quench dynamics of a correlated quantum dot sandwiched between normal-metal and
1.1
superconducting leads. Physical Review B, 2021, 103, .
$1.1-8$

Subgap dynamics of double quantum dot coupled between superconducting and normal leads.
1.6

Unconventional topological transitions in a self-organized magnetic ladder. Physical Review B, 2021,
103,

Statistical correlations of currents flowing through a proximized quantum dot. Physical Review B,
9 2020,101, .101, .
Dimerization-induced topological superconductivity in a Rashba nanowire. Physical Review B, 2020,
11 101,Magnetic field effect on trivial and topological bound states of superconducting quantum dot.12 Journal of Physics Condensed Matter, 2020, 32, 445803.
$0.7 \quad 2$
\square
Postquench Dynamics of Quantum Dot Proximitized to Superconducting Lead. Acta Physica Polonica
A, 2020, 138, 691-694.0.20

14 Quasiparticles of a periodically driven quantum dot coupled between superconducting and normal leads. Physical Review B, 2019, 100, .

19	Interplay between pairing and correlations in spin-polarized bound states. Beilstein Journal of Nanotechnology, 2018, 9, 1370-1380.	1.5	2
20	Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices. Journal of Physics Condensed Matter, 2018, 30, 355602.	0.7	7
21	Buildup and transient oscillations of Andreev quasiparticles. Physical Review B, 2018, 98,	1.1	13
22	Statistics of Tunneling Events in Three-Terminal Hybrid Devices with Quantum Dot. Acta Physica Polonica A, 2018, 133, 391-393.	0.2	4
23	Majorana quasiparticles of an inhomogeneous Rashba chain. Physical Review B, 2017, 95,	1.1	20
24	Interplay between electron pairing and Dicke effect in triple quantum dot structures. Physical Review B, 2017, 95, .	1.1	12
25	Spin-sensitive interference due to Majorana state on the interface between normal and superconducting leads. Journal of Physics Condensed Matter, 2017, 29, 075603.	0.7	27
26	Josephson-phase-controlled interplay between correlation effects and electron pairing in a three-terminal nanostructure. Physical Review B, 2017, 95, .	1.1	24
27	Yu-Shiba-Rusinov states of impurities in a triangular lattice of <mml:math xmlns:mml="http:\|/www.w3.org/1998/Math/MathML">mml:msubmml:mi NbSe</mml:mi> <mml spin-orbit coupling. Physical Review B, 2017, 96, .		

28 Controlling the bound states in a quantum-dot hybrid nanowire. Physical Review B, 2017, 96, .
1.1

76

> Cooper Pair Splitting Efficiency in the Hybrid Three-Terminal Quantum Dot. Journal of
> Superconductivity and Novel Magnetism, 2017, 30, 135-138.
$0.8 \quad 5$

30 Polarization of the Majorana quasiparticles in the Rashba chain. Scientific Reports, 2017, 7, 16193.
1.6

20

31 Fluctuation conductivity due to the preformed local pairs. Low Temperature Physics, 2016, 42, 924-929.
0.20

32 Local and nonlocal thermopower in three-terminal nanostructures. Physical Review B, 2016, 93, .
1.1

18

Constructive influence of the induced electron pairing on the Kondo state. Scientific Reports, 2016, 6,
23336.
1.6

36

Quasiparticle states driven by a scattering on the preformed electron pairs. Condensed Matter Physics, 2016, 19, 13701.

Fano-type resonances induced by a boson mode in Andreev conductance. Chinese Physics B, 2015, 24,
017304 .

Enhancements of the Andreev conductance due to emission/absorption of bosonic quanta. Journal of Physics Condensed Matter, 2015, 27, 305302.

Andreev Spectroscopy in Three-Terminal Hybrid Nanostructure. Acta Physica Polonica A, 2015, 127, 293-295.

Tunable interplay between superconductivity and correlations in nanoscopic heterostructures. Philosophical Magazine, 2015, 95, 538-549.

Single Particle Excitation Spectrum of a Proximized Quantum Dot: The Flow Equation Study. Acta
Physica Polonica A, 2014, 126, A-137-A-140.

Phonon Signatures of a Quantum Impurity with Induced Electron Pairing. Acta Physica Polonica A, 2014, 126, A-73-A-76.

In-gap states of a quantum dot coupled between a normal and a superconducting lead. Journal of
Physics Condensed Matter, 2013, 25, 435305.

Interplay between direct and crossed Andreev reflections in hybrid nanostructures. Physical Review B, 2013, 88, .

Decoherence effect on Fano line shapes in double quantum dots coupled between normal and superconducting leads. Physical Review B, 2012, 85, .

Interplay between the Correlations and Superconductivity in Electron Transport through the Double
Quantum Dots. Acta Physica Polonica A, 2012, 121, 1213-1215.

Interference Effects on Double Quantum Dots Coupled Between Metallic and Superconducting Leads.
Acta Physica Polonica A, 2012, 121, 812-815.

Electromagnetic Response of the BCS Superconductor: Flow Equation Approach. Acta Physica
Polonica A, 2012, 121, 854-857.

Renormalization Group Approach for the Double Exchange Ferromagnets. Acta Physica Polonica A,
2012, 122, 1099-1101.

Fano-type interference in quantum dots coupled between metallic and superconducting leads.
Physical Review B, 2011, 84, .

51 Spectroscopic Bogoliubov features near the unitary limit. Physical Review A, 2011, 84, .
1.0

Flow equation approach to the linear response theory of superconductors. Physical Review B, 2011, 84, .

Particle-hole mixing driven by the superconducting fluctuations. European Physical Journal B, 2010,
74, 437-445.
0.6
1.1

6
1.1

47

4

Inhomogeneities in Superconductors Described by the Two-Component Model. Acta Physica Polonica A, 2010, 118, 360-363.

On Realization of the Bose-Einstein Condensates and Quantum Superfluids. Acta Physica Polonica A, 2010, 118, 204-211.

Electron pair current through the correlated quantum dot. Physica Status Solidi (B): Basic Research, 2009, 246, 985-988.

Meservey-Tedrow-Fulde effect in a quantum dot embedded between metallic and superconducting electrodes. Physical Review B, 2008, 78, .

Interplay between particle-hole splitting and the Kondo effect in quantum dots. Physical Review B,
2008, 78, .
1.1

Real Space Bogoliubov-de Gennes Equations Study of the Boson-Fermion Model. Acta Physica Polonica
A, 2008, 114, 165-169.

The In-Gap Charge Current through the Correlated Quantum Dot Hybridized with Superconductor.
Acta Physica Polonica A, 2008, 114, 75-82.

RENORMALIZATION GROUP APPROACH TO THE PAIRING INSTABILITIES. International Journal of Modern
Physics E, 2007, 16, 263-274.

Influence of pair coherence on charge tunneling through a quantum dot connected to a
64 superconducting lead. Physical Review B, 2007, 76, .
0.7
1.1

40

> 65 Influence of the correlation effects on charge transport through quantum dots. Physica Status
> Solidi (B): Basic Research, 2007, 244, 2437-2442.

Tunneling through the Quantum Dot Coupled to Incoherent Superconductor. Acta Physica Polonica A, 2007, 111, 671-682.
0.2

Tunneling through the Quantum Dot Coupled between Normal and Superconducting Leads. Acta
Physica Polonica A, 2007, 112, 157-160.

Quantum fluctuations of ultracold atom-molecule mixtures. Physica Status Solidi (B): Basic Research, 2006, 243, 98-102.

Ultracold atom superfluidity induced by the Feshbach resonance. Physica Status Solidi (B): Basic Research, 2005, 242, 398-403.

Remnant superfluid collective phase oscillations in the normal state of systems with resonant pairing. Physical Review B, 2004, 70, .

Interplay between single-particle and collective features in the boson fermion model. Physical Review
B, 2004, 70,
1.1

20

```
73 Nature of correlations in the atomic limit of the boson fermion model. European Physical Journal B,
2003, 33, 41-45. 2003, 33, 41-45.
```

$0.6 \quad 4$

Thermodynamics and tunneling spectroscopy in the pseudogap regime of the bosonâ€"fermion model. Physica C: Superconductivity and Its Applications, 2003, 387, 77-81.Continuous canonical transformation for the double exchange model. European Physical Journal B,2001, 23, 49-56.
SUPERCONDUCTIVITY WITH â€ $€^{\sim} \cdot \mathrm{F}$. PAIRINGâ€ ${ }^{\text {тм }}$: GAP PARAMETER AND SINGLE PARTICLE TUNNELING. Modern Physics
Letters B, 1994, 08, 149-157.

84 Hole superconductivity in Hubbard subbands. Physical Review B, 1994, 49, 12182-12187.
1.1

2

```
85 On NMR relaxation rate in anisotropic superconductors. Physica B: Condensed Matter, 1994, 194-196,
    1593-1594.
```

On electromagnetic properties of superconductors in the â€œcorrelated hoppingâ€•model. Physica C: Superconductivity and Its Applications, 1993, 215, 97-104.

