Hillel Fromm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127507/publications.pdf

Version: 2024-02-01

50170 82410 9,295 76 46 72 citations h-index g-index papers 80 80 80 8202 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	GABA signaling in plants: targeting the missing pieces of the puzzle. Journal of Experimental Botany, 2020, 71, 6238-6245.	2.4	36
2	Root Plasticity in the Pursuit of Water. Plants, 2019, 8, 236.	1.6	46
3	A Ca2+/CaM-regulated transcriptional switch modulates stomatal development in response to water deficit. Scientific Reports, 2019, 9, 12282.	1.6	19
4	CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: A Key Regulator of Na ⁺ Homeostasis during Germination. Plant Physiology, 2019, 180, 1101-1118.	2.3	53
5	Water Sensing in Plants. , 2019, , 79-94.		2
6	SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science, 2018, 270, 278-291.	1.7	15
7	A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nature Communications, 2018, 9, 4204.	5.8	42
8	MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca ²⁺ signal essential for root water tracking in <i>Arabidopsis</i> Sciences of the United States of America, 2018, 115, 8031-8036.	3.3	76
9	The Cholodny-Went theory does not explain hydrotropism. Plant Science, 2016, 252, 400-403.	1.7	16
10	Reactive oxygen species tune root tropic responses. Plant Physiology, 2016, 172, pp.00660.2016.	2.3	44
11	Hydrotropism: Root Bending Does Not Require Auxin Redistribution. Molecular Plant, 2016, 9, 757-759.	3.9	51
12	Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?. Frontiers in Plant Science, 2015, 6, 419.	1.7	215
13	Repression and De-repression of Gene Expression in the Plant Immune Response: The Complexity of Modulation by Ca2+ and Calmodulin. Molecular Plant, 2015, 8, 671-673.	3.9	16
14	Combined Transcriptomics and Metabolomics of Arabidopsis thaliana Seedlings Exposed to Exogenous GABA Suggest Its Role in Plants Is Predominantly Metabolic. Molecular Plant, 2014, 7, 1065-1068.	3.9	56
15	Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics, 2014, 15, 456.	1.2	188
16	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
17	Leaf-Induced Gibberellin Signaling Is Essential for Internode Elongation, Cambial Activity, and Fiber Differentiation in Tobacco Stems Â. Plant Cell, 2012, 24, 66-79.	3.1	117
18	A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant Journal, 2011, 67, 485-498.	2.8	160

#	Article	IF	Citations
19	Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta, 2010, 232, 165-178.	1.6	87
20	How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Plant Signaling and Behavior, 2010, 5, 1311-1314.	1.2	16
21	Calcium-Regulated Transcription in Plants. Molecular Plant, 2010, 3, 653-669.	3.9	163
22	Physiological Roles of Cyclic Nucleotide Gated Channels in Plants. Signaling and Communication in Plants, 2009, , 91-106.	0.5	13
23	Environmental Conditions Affect the Color, Taste, and Antioxidant Capacity of 11 Pomegranate Accessions' Fruits. Journal of Agricultural and Food Chemistry, 2009, 57, 9197-9209.	2.4	116
24	Calmodulinâ€binding transcription activator (CAMTA) 3 mediates biotic defense responses in <i>Arabidopsis</i> . FEBS Letters, 2008, 582, 943-948.	1.3	183
25	Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 2008, 13, 14-19.	4.3	583
26	Mutants of GABA Transaminase (POP2) Suppress the Severe Phenotype of succinic semialdehyde dehydrogenase (ssadh) Mutants in Arabidopsis. PLoS ONE, 2008, 3, e3383.	1.1	74
27	Ca ²⁺ -Responsive cis-Elements in Plants. Plant Signaling and Behavior, 2007, 2, 17-19.	1.2	20
28	Cyclic nucleotide-gated channels in plants. FEBS Letters, 2007, 581, 2237-2246.	1.3	206
29	CAMTAs: Calmodulinâ€binding transcription activators from plants to human. FEBS Letters, 2007, 581, 3893-3898.	1.3	184
30	Mitochondrial type†prohibitins of <i>Arabidopsis thaliana</i> are required for supporting proficient meristem development. Plant Journal, 2007, 52, 850-864.	2.8	114
31	GABA and GHB Neurotransmitters in Plants and Animals. , 2006, , 171-185.		8
32	C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 872-876.	1.1	16
33	Rapid Transcriptome Changes Induced by Cytosolic Ca2+ Transients Reveal ABRE-Related Sequences as Ca2+-Responsive cis Elements in Arabidopsis. Plant Cell, 2006, 18, 2733-2748.	3.1	277
34	GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsismutants. FEBS Letters, 2005, 579, 415-420.	1.3	111
35	PLANT-SPECIFIC CALMODULIN-BINDING PROTEINS. Annual Review of Plant Biology, 2005, 56, 435-466.	8.6	379
36	The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Molecular Biology, 2004, 55, 315-325.	2.0	107

#	Article	IF	Citations
37	GABA in plants: just a metabolite?. Trends in Plant Science, 2004, 9, 110-115.	4.3	960
38	GABA signaling: a conserved and ubiquitous mechanism. Trends in Cell Biology, 2003, 13, 607-610.	3.6	197
39	Mitochondrial succinic-semialdehyde dehydrogenase of the Â-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6843-6848.	3.3	375
40	Arabidopsis Inositol Polyphosphate 6-/3-Kinase Is a Nuclear Protein That Complements a Yeast Mutant Lacking a Functional ArgR-Mcm1 Transcription Complex. Plant Cell, 2003, 15, 449-463.	3.1	80
41	Electrophysiological Analysis of Cloned Cyclic Nucleotide-Gated Ion Channels. Plant Physiology, 2002, 128, 400-410.	2.3	198
42	A Novel Family of Calmodulin-binding Transcription Activators in Multicellular Organisms. Journal of Biological Chemistry, 2002, 277, 21851-21861.	1.6	258
43	Calmodulin as a versatile calcium signal transducer in plants. New Phytologist, 2001, 151, 35-66.	3.5	442
44	Calmodulin and Plant Responses to the Environment. , 2001, , 113-123.		0
45	Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochemical Journal, 2000, 350, 299.	1.7	40
46	Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochemical Journal, 2000, 350, 299-306.	1.7	77
47	A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Molecular Biology, 2000, 42, 591-601.	2.0	100
48	Plant Succinic Semialdehyde Dehydrogenase:  Dissection of Nucleotide Binding by Surface Plasmon Resonance and Fluorescence Spectroscopy. Biochemistry, 2000, 39, 10110-10117.	1.2	31
49	Expression of a truncated tobacco <i>NtCBP4</i> channel in transgenic plants and disruption of the homologous <i>Arabidopsis CNGC1</i> gene confer Pb ²⁺ tolerance. Plant Journal, 2000, 24, 533-542.	2.8	14
50	Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant Journal, 2000, 24, 533-542.	2.8	173
51	Plant Succinic Semialdehyde Dehydrogenase. Cloning, Purification, Localization in Mitochondria, and Regulation by Adenine Nucleotides. Plant Physiology, 1999, 121, 589-598.	2.3	121
52	A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant Journal, 1999, 20, 171-182.	2.8	288
53	The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO Journal, 1999, 18, 1996-2007.	3.5	152
54	Developmentally regulated organ-, tissue-, and cell-specific expression of calmodulin genes in common wheat. Plant Molecular Biology, 1998, 37, 109-120.	2.0	34

#	Article	lF	Citations
55	Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Molecular Biology, 1998, 37, 967-975.	2.0	81
56	Identification and purification of the calcium-regulated Ca2+ -ATPase from the endoplasmic reticulum of a higher plant mechanoreceptor organ. Physiologia Plantarum, 1998, 102, 561-572.	2.6	5
57	Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends in Plant Science, 1998, 3, 299-304.	4.3	229
58	Characterization of the plant homologue of prohibitin, a gene associated with antiproliferative activity in mammalian cells., 1997, 33, 753-756.		58
59	Activation of a Recombinant Petunia Glutamate Decarboxylase by Calcium/Calmodulin or by a Monoclonal Antibody Which Recognizes the Calmodulin Binding Domain. Journal of Biological Chemistry, 1996, 271, 4148-4153.	1.6	141
60	PCR-generated cDNA library of transition-stage maize embryos: cloning and expression of calmodulin genes during early embryogenesis. Plant Molecular Biology, 1995, 27, 105-113.	2.0	24
61	Molecular and Biochemical Analysis of Calmodulin Interactions with the Calmodulin-Binding Domain of Plant Glutamate Decarboxylase. Plant Physiology, 1995, 108, 551-561.	2.3	120
62	Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiology, 1995, 108, 543-549.	2.3	155
63	The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated. Plant Physiology, 1994, 106, 1381-1387.	2.3	43
64	Isolation and characterization of two cDNAs that encode for calmodulin-binding proteins from corn root tips. Plant Science, 1993, 94, 109-117.	1.7	43
65	Cloning of plant cDNAs encoding calmodulin-binding proteins using 35S-labeled recombinant calmodulin as a probe. Plant Molecular Biology Reporter, 1992, 10, 199-206.	1.0	55
66	The tobacco transcription activator TGA1a binds to a sequence in the $5\hat{a} \in \mathbb{Z}^2$ upstream region of a gene encoding a TGA1a-related protein. Molecular Genetics and Genomics, 1991, 229, 181-188.	2.4	45
67	An Octopine Synthase Enhancer Element Directs Tissue-Specific Expression and Binds ASF-1, a Factor from Tobacco Nuclear Extracts. Plant Cell, 1989, 1, 977.	3.1	18
68	Ribosomal protein S12 as a site for streptomycin resistance in Nicotiana chloroplasts. Molecular Genetics and Genomics, 1989, 218, 289-292.	2.4	47
69	A novel site for streptomycin resistance in the ?530 loop? of chloroplast 16S ribosomal RNA. Plant Molecular Biology, 1989, 12, 499-505.	2.0	47
70	Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell, 1987, 48, 111-119.	13.5	135
71	The molecular basis for rRNA-dependent spectinomycin resistance in <i>Nicotiana</i> chloroplasts. EMBO Journal, 1987, 6, 3233-3237.	3.5	75
72	Cybrids in Nicotiana, Solanum and Citrus: Isolation and Characterization of Plastome Mutants: Pre-Fusion Treatments, Selection and Analysis of Cybrids., 1987,, 199-207.		7

#	Article	IF	CITATIONS
73	The enigma of the gene coding for ribosomal protein S12 in the chtoroplasts of Nicotiana. Nucleic Acids Research, 1986, 14, 883-898.	6.5	63
74	Control of <i>psbA</i> gene expression: in mature <i>Spirodela</i> chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO Journal, 1985, 4, 291-295.	3. 5	162
75	Clone bank of Nicotiana tabacum chloroplast DNA: Mapping of the alpha, beta and epsilon subunits of the ATPase coupling factor, the large subunit of ribulosebisphosphate carboxylase, and the 32-kDal membrane protein. Gene, 1983, 25, 271-280.	1.0	68
76	GABA and GHB Neurotransmitters in Plants and Animals. , 0, , 171-185.		0