
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8127355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp Harmful Algae, 2016, 54, 4-20.	4.8	776
2	First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon, 2007, 50, 292-301.	1.6	179
3	Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests. PLoS ONE, 2013, 8, e73935.	2.5	169
4	High Levels of Structural Diversity Observed in Microcystins from Microcystis CAWBG11 and Characterization of Six New Microcystin Congeners. Marine Drugs, 2014, 12, 5372-5395.	4.6	162
5	Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE, 2017, 12, e0187636.	2.5	150
6	Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME Journal, 2008, 2, 308-320.	9.8	144
7	Release and degradation of environmental DNA and RNA in a marine system. Science of the Total Environment, 2020, 704, 135314.	8.0	126
8	A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. Marine Pollution Bulletin, 2018, 127, 97-107.	5.0	102
9	Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecological Indicators, 2018, 85, 1044-1057.	6.3	101
10	Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ, 2017, 5, e3347.	2.0	101
11	The rise of toxic benthic Phormidium proliferations: A review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae, 2016, 55, 282-294.	4.8	94
12	Advantages and Limitations of Environmental DNA/RNA Tools for Marine Biosecurity: Management and Surveillance of Non-indigenous Species. Frontiers in Marine Science, 2018, 5, .	2.5	94
13	Targeted gene enrichment and highâ€ŧhroughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Molecular Ecology Resources, 2016, 16, 1240-1254.	4.8	92
14	Switching toxin production on and off: intermittent microcystin synthesis in a <i>Microcystis</i> bloom. Environmental Microbiology Reports, 2011, 3, 118-124.	2.4	91
15	A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for speciesâ€specific detection in environmental DNA. Molecular Ecology Resources, 2019, 19, 1407-1419.	4.8	91
16	Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon, 2010, 55, 897-903.	1.6	88
17	Detection of tetrodotoxin from the grey side-gilled sea slug - Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. Toxicon, 2010, 56, 466-473.	1.6	87
18	FIRST REPORT OF THE CYANOTOXIN ANATOXIN-A FROMAPHANIZOMENON ISSATSCHENKOI(CYANOBACTERIA). Journal of Phycology, 2007, 43, 356-365.	2.3	81

#	Article	IF	CITATIONS
19	Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nature Climate Change, 2012, 2, 356-360.	18.8	81
20	Molecular genetic tools for environmental monitoring of New Zealand's aquatic habitats, past, present and the future. New Zealand Journal of Marine and Freshwater Research, 2013, 47, 90-119.	2.0	78
21	Widespread Distribution and Identification of Eight Novel Microcystins in Antarctic Cyanobacterial Mats. Applied and Environmental Microbiology, 2008, 74, 7243-7251.	3.1	77
22	Within-Mat Variability in Anatoxin-a and Homoanatoxin-a Production among Benthic Phormidium (Cyanobacteria) Strains. Toxins, 2012, 4, 900-912.	3.4	77
23	Assessing the effects of salmon farming seabed enrichment using bacterial community diversity and high-throughput sequencing. FEMS Microbiology Ecology, 2015, 91, fiv089.	2.7	77
24	First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon, 2011, 57, 566-573.	1.6	74
25	Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshwater Biology, 2020, 65, 1824-1842.	2.4	71
26	First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Marine Environmental Research, 2016, 120, 225-235.	2.5	67
27	Survey of cyanotoxins in New Zealand water bodies between 2001 and 2004. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 585-597.	2.0	66
28	Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia, 2017, 785, 71-89.	2.0	64
29	Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers. PLoS ONE, 2015, 10, e0141063.	2.5	63
30	Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters, 2016, 6, 273-283.	2.2	62
31	First Detection of Tetrodotoxin in the Bivalve Paphies australis by Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry With and Without Precolumn Reaction. Journal of AOAC INTERNATIONAL, 2014, 97, 325-333.	1.5	61
32	Tetrodotoxin in marine bivalves and edible gastropods: A mini-review. Chemosphere, 2019, 236, 124404.	8.2	58
33	Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	55
34	Fine-scale spatial variability in anatoxin-a and homoanatoxin-a concentrations in benthic cyanobacterial mats: implication for monitoring and management. Journal of Applied Microbiology, 2010, 109, 2011-2018.	3.1	55
35	Species composition and cyanotoxin production in periphyton mats from three lakes of varying trophic status. FEMS Microbiology Ecology, 2012, 79, 312-326.	2.7	55
36	The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: A high-throughput sequencing analysis. Marine Environmental Research, 2018, 133, 57-66.	2.5	54

#	Article	IF	CITATIONS
37	Metabarcoding improves detection of eukaryotes from early biofouling communities: implications for pest monitoring and pathway management. Biofouling, 2016, 32, 671-684.	2.2	53
38	Development of solid phase adsorption toxin tracking (SPATT) for monitoring anatoxin-a and homoanatoxin-a in river water. Chemosphere, 2011, 82, 888-894.	8.2	51
39	Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	51
40	Linking Environmental DNA and RNA for Improved Detection of the Marine Invasive Fanworm Sabella spallanzanii. Frontiers in Marine Science, 2019, 6, .	2.5	51
41	Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Journal of Environmental Monitoring, 2011, 13, 1617.	2.1	50
42	Potent toxins in Arctic environments – Presence of saxitoxins and an unusual microcystin variant in Arctic freshwater ecosystems. Chemico-Biological Interactions, 2013, 206, 423-431.	4.0	49
43	A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. Journal of Applied Phycology, 2014, 26, 15-23.	2.8	47
44	Application of a spectrofluorimetric tool (bbe BenthoTorch) for monitoring potentially toxic benthic cyanobacteria in rivers. Water Research, 2016, 101, 341-350.	11.3	46
45	Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Scientific Reports, 2018, 8, 16290.	3.3	46
46	Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study. Inland Waters, 2012, 2, 17-22.	2.2	45
47	Geographically conserved microbiomes of four temperate water tunicates. Environmental Microbiology Reports, 2016, 8, 470-478.	2.4	45
48	Successional Change in Microbial Communities of Benthic Phormidium-Dominated Biofilms. Microbial Ecology, 2015, 69, 254-266.	2.8	44
49	Early detection of eukaryotic communities from marine biofilm using high-throughput sequencing: an assessment of different sampling devices. Biofouling, 2015, 31, 241-251.	2.2	44
50	Detection of anatoxin-producing <i>Phormidium</i> in a New Zealand farm pond and an associated dog death. New Zealand Journal of Botany, 2017, 55, 36-46.	1.1	44
51	First identification of tetrodotoxin (TTX) in the flatworm Stylochoplana sp.; a source of TTX for the sea slug Pleurobranchaea maculata. Toxicon, 2015, 95, 23-29.	1.6	43
52	Tetrodotoxin Concentrations in Pleurobranchaea maculata: Temporal, Spatial and Individual Variability from New Zealand Populations. Marine Drugs, 2012, 10, 163-176.	4.6	42
53	Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience, 2021, 71, 1011-1027.	4.9	42
54	Recent invader or indicator of environmental change? A phylogenetic and ecological study of Cylindrospermopsis raciborskii in New Zealand. Harmful Algae, 2014, 39, 64-74.	4.8	41

#	Article	IF	CITATIONS
55	Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiology Ecology, 2009, 67, 252-260.	2.7	39
56	Production of Anatoxin-a and a Novel Biosynthetic Precursor by the CyanobacteriumAphanizomenon issatschenkoi. Environmental Science & amp; Technology, 2007, 41, 506-510.	10.0	38
57	Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica. Toxins, 2015, 7, 493-515.	3.4	37
58	Effect of river flow, temperature, and water chemistry on proliferations of the benthic anatoxin-producing cyanobacterium <i>Phormidium</i> . Freshwater Science, 2017, 36, 63-76.	1.8	37
59	Depuration of Tetrodotoxin and Changes in Bacterial Communities in Pleurobranchea maculata Adults and Egg Masses Maintained in Captivity. Journal of Chemical Ecology, 2012, 38, 1342-1350.	1.8	36
60	Phormidium autumnale Growth and Anatoxin-a Production under Iron and Copper Stress. Toxins, 2013, 5, 2504-2521.	3.4	36
61	Survey of Scytonema (Cyanobacteria) and associated saxitoxins in the littoral zone of recreational lakes in Canterbury, New Zealand. Phycologia, 2012, 51, 542-551.	1.4	35
62	The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiology Ecology, 2015, 91, fiv144.	2.7	35
63	Considerations for incorporating real-time PCR assays into routine marine biosecurity surveillance programmes: a case study targeting the Mediterranean fanworm (<i>Sabella spallanzanii</i>) and club tunicate (<i>Styela clava</i>). Genome, 2019, 62, 137-146.	2.0	35
64	Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Environmental Science and Pollution Research, 2018, 25, 1079-1088.	5.3	34
65	First report of microcystin-producing Fischerella sp. (Stigonematales, Cyanobacteria) in tropical Australia. Toxicon, 2014, 88, 62-66.	1.6	33
66	The Abundance of Toxic Genotypes Is a Key Contributor to Anatoxin Variability in Phormidium-Dominated Benthic Mats. Marine Drugs, 2017, 15, 307.	4.6	33
67	Investigating Diet as the Source of Tetrodotoxin in Pleurobranchaea maculata. Marine Drugs, 2014, 12, 1-16.	4.6	32
68	Toxic Cyanobacteria in Svalbard: Chemical Diversity of Microcystins Detected Using a Liquid Chromatography Mass Spectrometry Precursor Ion Screening Method. Toxins, 2018, 10, 147.	3.4	31
69	The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiology Ecology, 2012, 82, 356-366.	2.7	30
70	Effects of nitrogen and phosphorus on anatoxin-a, homoanatoxin-a, dihydroanatoxin-a and dihydrohomoanatoxin-a production by Phormidium autumnale. Toxicon, 2014, 92, 179-185.	1.6	30
71	Biosecurity implications of drifting marine plastic debris: Current knowledge and future research. Marine Pollution Bulletin, 2021, 162, 111835.	5.0	30
72	Insertions within the Saxitoxin Biosynthetic Gene Cluster Result in Differential Toxin Profiles. ACS Chemical Biology, 2018, 13, 3107-3114.	3.4	29

#	Article	IF	CITATIONS
73	Intracellular Immunohistochemical Detection of Tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). Marine Drugs, 2015, 13, 756-769.	4.6	28
74	New Zealand risk management approach for toxic cyanobacteria in drinking water. Australian and New Zealand Journal of Public Health, 2007, 31, 275-281.	1.8	27
75	Diversity and Biosynthetic Potential of Culturable Microbes Associated with Toxic Marine Animals. Marine Drugs, 2013, 11, 2695-2712.	4.6	27
76	Spatiotemporal dynamics of Phormidium cover and anatoxin concentrations in eight New Zealand rivers with contrasting nutrient and flow regimes. Science of the Total Environment, 2018, 612, 71-80.	8.0	27
77	Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts. Biofouling, 2018, 34, 657-672.	2.2	27
78	Acute toxicity of dihydroanatoxin-a from Microcoleus autumnalis in comparison to anatoxin-a. Chemosphere, 2021, 263, 127937.	8.2	27
79	Comparing sediment DNA extraction methods for assessing organic enrichment associated with marine aquaculture. PeerJ, 2020, 8, e10231.	2.0	27
80	Towards reproducible metabarcoding data: Lessons from an international crossâ€laboratory experiment. Molecular Ecology Resources, 2021, , .	4.8	25
81	Development and field assessment of a quantitative PCR for the detection and enumeration of the noxious bloom-formerAnabaena planktonica. Limnology and Oceanography: Methods, 2007, 5, 474-483.	2.0	24
82	Maintenance of cyanotoxin production by cryopreserved cyanobacteria in the New Zealand culture collection. New Zealand Journal of Marine and Freshwater Research, 2008, 42, 277-283.	2.0	24
83	Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiology Ecology, 2017, 93, fiw234.	2.7	24
84	Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent. Toxins, 2017, 9, 129.	3.4	24
85	Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data. Journal of Microbiological Methods, 2021, 188, 106271.	1.6	24
86	Structural Characterization of New Microcystins Containing Tryptophan and Oxidized Tryptophan Residues. Marine Drugs, 2013, 11, 3025-3045.	4.6	23
87	Anatoxins are consistently released into the water of streams with Microcoleus autumnalis-dominated (cyanobacteria) proliferations. Harmful Algae, 2018, 80, 88-95.	4.8	23
88	Polyphasic studies of cyanobacterial strains isolated from benthic freshwater mats in Canterbury, New Zealand. New Zealand Journal of Botany, 2014, 52, 116-135.	1.1	22
89	Modulation of microcystin congener abundance following nitrogen depletion of a Microcystis batch culture. Aquatic Ecology, 2016, 50, 235-246.	1.5	22
90	Incorporating molecular-based functional and co-occurrence network properties into benthic marine impact assessments. FEMS Microbiology Ecology, 2018, 94, .	2.7	22

#	Article	IF	CITATIONS
91	Development of a real-time PCR assay for the detection of the invasive clam, Corbula amurensis, in environmental samples. Journal of Experimental Marine Biology and Ecology, 2012, 412, 52-57.	1.5	21
92	Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia, 2013, 711, 139-154.	2.0	21
93	Development of a real-time polymerase chain reaction assay for the detection of the invasive Mediterranean fanworm, Sabella spallanzanii, in environmental samples. Environmental Science and Pollution Research, 2017, 24, 17373-17382.	5.3	21
94	No Evidence for a Culturable Bacterial Tetrodotoxin Producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida). Toxins, 2015, 7, 255-273.	3.4	20
95	Re-evaluation of paralytic shellfish toxin profiles in cyanobacteria using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Toxicon, 2019, 158, 1-7.	1.6	20
96	Local factors drive bacterial and microeukaryotic community composition in lake surface sediment collected across an altitudinal gradient. FEMS Microbiology Ecology, 2020, 96, .	2.7	20
97	Consumption of benthic cyanobacterial mats and nodularin-R accumulation in freshwater crayfish (Paranephrops planifrons) in Lake Tikitapu (Rotorua, New Zealand). Harmful Algae, 2012, 20, 175-179.	4.8	19
98	Isolation and structure determination of two new hydrophobic microcystins from Microcystis sp. (CAWBG11). Phytochemistry Letters, 2013, 6, 575-581.	1.2	19
99	Extracts from benthic anatoxinâ€producing <i>Phormidium</i> are toxic to 3 macroinvertebrate taxa at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 2018, 37, 2851-2859.	4.3	19
100	Metabarcoding as a tool to enhance marine surveillance of nonindigenous species in tropical harbors: A case study in Tahiti. Environmental DNA, 2021, 3, 173-189.	5.8	19
101	Elucidating Biodiversity Shifts in Ballast Water Tanks during a Cross-Latitudinal Transfer: Complementary Insights from Molecular Analyses. Environmental Science & Technology, 2020, 54, 8443-8454.	10.0	19
102	Demonstration of the use of a photosynthetic microbial fuel cell as an environmental biosensor. International Journal of Nanotechnology, 2017, 14, 213.	0.2	18
103	Multiple processes acting from local to large geographical scales shape bacterial communities associated with Phormidium (cyanobacteria) biofilms in French and New Zealand rivers. Scientific Reports, 2018, 8, 14416.	3.3	18
104	Phycocyanin sensors as an early warning system for cyanobacteria blooms concentrations: a case study in the Rotorua lakes. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 555-570.	2.0	18
105	Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand. Toxicon: X, 2019, 2, 100008.	2.9	18
106	Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Harmful Algae, 2020, 97, 101869.	4.8	17
107	Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts. Toxins, 2020, 12, 244.	3.4	17
108	In situ accumulation of tetrodotoxin in non-toxic Pleurobranchaea maculata (Opisthobranchia). Aquatic Sciences, 2017, 79, 335-344.	1.5	16

#	Article	IF	CITATIONS
109	Development and Application of a Quantitative PCR Assay to Assess Genotype Dynamics and Anatoxin Content in Microcoleus autumnalis-Dominated Mats. Toxins, 2018, 10, 431.	3.4	16
110	Distribution of Tetrodotoxin in the New Zealand Clam, Paphies australis, Established Using Immunohistochemistry and Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Toxins, 2018, 10, 282.	3.4	16
111	Changes in saxitoxin-production through growth phases in the metaphytic cyanobacterium Scytonema cf. crispum. Toxicon, 2015, 103, 74-79.	1.6	15
112	Multiple cyanotoxin congeners produced by sub-dominant cyanobacterial taxa in riverine cyanobacterial and algal mats. PLoS ONE, 2019, 14, e0220422.	2.5	15
113	Investigating variability in microbial community composition in replicate environmental DNA samples down lake sediment cores. PLoS ONE, 2021, 16, e0250783.	2.5	15
114	New records of planktonic cyanobacteria in New Zealand freshwaters. New Zealand Journal of Botany, 2005, 43, 479-492.	1.1	14
115	Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia, 2015, 745, 297-312.	2.0	14
116	Is a Central Sediment Sample Sufficient? Exploring Spatial and Temporal Microbial Diversity in a Small Lake. Toxins, 2020, 12, 580.	3.4	14
117	Variability in the anatoxin gene clusters of Cuspidothrix issatschenkoi from Germany, New Zealand, China and Japan. PLoS ONE, 2018, 13, e0200774.	2.5	13
118	Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express, 2011, 1, 19.	3.0	12
119	Fineâ€scale cryogenic sampling of planktonic microbial communities: Application to toxic cyanobacterial blooms. Limnology and Oceanography: Methods, 2016, 14, 600-609.	2.0	12
120	Intracellular, environmental and biotic interactions influence recruitment of benthicMicrocystis(Cyanophyceae) in a shallow eutrophic lake. Journal of Plankton Research, 2016, 38, 1289-1301.	1.8	11
121	Exploring benthic cyanobacterial diversity and co-occurring potentially harmful dinoflagellates in six islands of the South Pacific. Hydrobiologia, 2021, 848, 2815-2829.	2.0	11
122	Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of <i>Microcoleus</i> . MBio, 2021, 12, e0223521.	4.1	11
123	Molecular and Pigment Analyses Provide Comparative Results When Reconstructing Historic Cyanobacterial Abundances from Lake Sediment Cores. Microorganisms, 2022, 10, 279.	3.6	11
124	Optimised protocol for the extraction of fish <scp>DNA</scp> from freshwater sediments. Freshwater Biology, 2022, 67, 1584-1603.	2.4	11
125	Laboratory study of the survival and attachment of Didymosphenia geminata (Bacillariophyceae) in water sourced from rivers throughout New Zealand. Phycologia, 2014, 53, 1-9.	1.4	10
126	The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement. Toxins, 2015, 7, 821-834.	3.4	10

#	Article	IF	CITATIONS
127	Microcystins in New Zealand: a review of occurrence, congener diversity and cell quotas. New Zealand Journal of Botany, 2019, 57, 93-111.	1.1	10
128	Development of single and multispecies detection methods for the surveillance and monitoring of marine pests in New Zealand. Aquatic Invasions, 2012, 7, 125-128.	1.6	10
129	Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiology Reviews, 2022, 46, .	8.6	10
130	Broad and Fine Scale Variability in Bacterial Diversity and Cyanotoxin Quotas in Benthic Cyanobacterial Mats. Frontiers in Microbiology, 2020, 11, 129.	3.5	9
131	Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Molecular Ecology Resources, 2022, 22, 877-890.	4.8	9
132	Intra-colony motility ofMicrocystis wesenbergiicells. New Zealand Journal of Botany, 2014, 52, 153-159.	1.1	8
133	The effects of velocity and nitrate on <i>Phormidium</i> accrual cycles: a stream mesocosm experiment. Freshwater Science, 2018, 37, 496-509.	1.8	8
134	Seasonal and Spatial Variations in Bacterial Communities From Tetrodotoxin-Bearing and Non-tetrodotoxin-Bearing Clams. Frontiers in Microbiology, 2020, 11, 1860.	3.5	8
135	Beyond taxonomy: Validating functional inference approaches in the context of fishâ€farm impact assessments. Molecular Ecology Resources, 2021, 21, 2264-2277.	4.8	8
136	Lake microbial communities are not resistant or resilient to repeated largeâ€scale natural pulse disturbances. Molecular Ecology, 2021, 30, 5137-5150.	3.9	8
137	Metabarcoding Reveals Lacustrine Picocyanobacteria Respond to Environmental Change Through Adaptive Community Structuring. Frontiers in Microbiology, 2021, 12, 757929.	3.5	8
138	Differential strain response in alkaline phosphatase activity to available phosphorus in Microcoleus autumnalis. Harmful Algae, 2019, 89, 101664.	4.8	7
139	A Microencapsulation Method for Delivering Tetrodotoxin to Bivalves to Investigate Uptake and Accumulation. Marine Drugs, 2021, 19, 33.	4.6	7
140	Spatial abundance and distribution of picocyanobacterial communities in two contrasting lakes revealed using environmental DNA metabarcoding. FEMS Microbiology Ecology, 2021, 97, .	2.7	7
141	Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS ONE, 2021, 16, e0254967.	2.5	7
142	A bacterial index to estimate lake trophic level: National scale validation. Science of the Total Environment, 2022, 812, 152385.	8.0	7
143	Novel techniques for the short-term culture and laboratory study ofDidymosphenia geminata. Diatom Research, 2014, 29, 293-301.	1.2	6
144	Forestry affects the abundance of Phormidium-dominated biofilms and the functioning of a New Zealand river ecosystem. Marine and Freshwater Research, 2017, 68, 1741.	1.3	6

#	Article	IF	CITATIONS
145	Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes. Metabarcoding and Metagenomics, 0, 6, .	0.0	6
146	Development of a non-lethal biopsy technique for estimating total tetrodotoxin concentrations in the grey side-gilled sea slug Pleurobranchaea maculata. Toxicon, 2013, 74, 27-33.	1.6	5
147	Algal and cyanobacterial bioenergy and diversity. New Zealand Journal of Botany, 2014, 52, 1-5.	1.1	5
148	Emerging HAB Research Issues in Freshwater Environments. Ecological Studies, 2018, , 381-402.	1.2	5
149	Reach- and mat-scale differences in <i>Microcoleus autumnalis</i> (cyanobacterium) accrual along velocity and nitrate gradients in three New Zealand rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 401-412.	1.4	5
150	5. Potential effects of climate change on cyanobacterial toxin production. , 2015, , 155-180.		4
151	Introduction: proceedings of the 2015 New Zealand symposium on algae and photosynthetic prokaryotes. New Zealand Journal of Botany, 2017, 55, 1-4.	1.1	4
152	Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquatic Sciences, 2021, 83, 1.	1.5	4
153	Development of droplet digital Polymerase Chain Reaction assays for the detection of long-finned (<i>Anguilla dieffenbachii</i>) and short-finned (<i>Anguilla australis</i>) eels in environmental samples. PeerJ, 2021, 9, e12157.	2.0	4
154	The Role of Environmental Processes and Geographic Distance in Regulating Local and Regionally Abundant and Rare Bacterioplankton in Lakes. Frontiers in Microbiology, 2021, 12, 793441.	3.5	4
155	Development of a triplex droplet digital polymerase chain reaction assay for the detection of three New Zealand native freshwater mussels (<i>Echyridella</i>) in environmental samples. Environmental DNA, 2022, 4, 1065-1077.	5.8	4
156	Characterisation of freshwater and marine cyanobacteria in the Hokianga region, Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 177-193.	2.0	3
157	Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata. Microbial Ecology, 2016, 72, 514-525.	2.8	3
158	<i>Microcoleus autumnalis and</i> filamentous algae-dominated mats and chlorophyll-a increase with agricultural land use but respond differently to associated nutrient and sediment enrichment. New Zealand Journal of Marine and Freshwater Research, 2020, 54, 449-466.	2.0	3
159	Growth at the limits: comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis). Scientific Reports, 2022, 12, 467.	3.3	3
160	A synthetic culture medium for the freshwater diatomDidymosphenia geminata. Diatom Research, 2016, 31, 303-311.	1.2	2
161	Measuring the influence of nutrients and river water on the photosynthetic efficiency of <i>Didymosphenia geminata</i> using pulse amplitude modulated fluorometry. Diatom Research, 2016, 31, 149-160.	1.2	2
162	In Situ Collection and Preservation of Intact Microcystis Colonies to Assess Population Diversity and Microcystin Quotas. Toxins, 2019, 11, 435.	3.4	2

SUSANNA A WOOD

#	Article	IF	CITATIONS
163	An ecotoxicological assessment of the acute toxicity of anatoxin congeners on New Zealand Deleatidium species (mayflies). Inland Waters, 2020, 10, 101-108.	2.2	2
164	Direct electron transport as a possible mechanism of electrogenic activity across a range of benthic cyanobacteria in a photosynthetic microbial fuel cell. New Zealand Journal of Botany, 2020, 58, 378-388.	1.1	2
165	Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: part 2. New Zealand Journal of Botany, 2020, 58, 275-333.	1.1	2
166	Current applications and technological advances in quantitative real-time PCR (qPCR): a versatile tool for the study of phytoplankton ecology. , 2022, , 303-351.		2
167	Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: Part 1. New Zealand Journal of Botany, 2019, 57, 65-69.	1.1	1
168	In situ river experiments to explore variability in Microcoleus autumnalis mat expansion. Hydrobiologia, 2021, 848, 445-467.	2.0	1
169	A validated protocol for fish farm monitoring using environmental DNA. ARPHA Conference Abstracts, 0, 4, .	0.0	1
170	Temporal and spatial variation in bacterial communities on uniform substrates in nonâ€wadeable rivers. Environmental DNA, 2021, 3, 1023-1034.	5.8	1
171	Isolation and characterisation of monoclonal picocyanobacterial strains from contrasting New Zealand lakes. Inland Waters, 2022, 12, 383-396.	2.2	1
172	Environmental DNA variability in lake sediment cores. ARPHA Conference Abstracts, 0, 4, .	0.0	0