
Pantelis Tsoulfas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selectively Imaging Cranial Sensory Ganglion Neurons Using AAV-PHP.S. ENeuro, 2022, 9, ENEURO.0373-21.2022.	1.9	1
2	Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration. Experimental Neurology, 2022, 355, 114147.	4.1	1
3	Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. Journal of Experimental Medicine, 2021, 218, .	8.5	121
4	Widening spinal injury research to consider all supraspinal cell types: Why we must and how we can. Experimental Neurology, 2021, 346, 113862.	4.1	6
5	mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30710-30721.	7.1	76
6	Global Connectivity and Function of Descending Spinal Input Revealed by 3D Microscopy and Retrograde Transduction. Journal of Neuroscience, 2018, 38, 10566-10581.	3.6	69
7	Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation. Nature Communications, 2017, 8, 1963.	12.8	32
8	Identification of genome-wide targets of Olig2 in the adult mouse spinal cord using ChIP-Seq. PLoS ONE, 2017, 12, e0186091.	2.5	12
9	3D Visualization of Individual Regenerating Retinal Ganglion Cell Axons Reveals Surprisingly Complex Growth Paths. ENeuro, 2017, 4, ENEURO.0093-17.2017.	1.9	40
10	A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells. European Journal of Neuroscience, 2016, 44, 2858-2870.	2.6	32
11	STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiology of Disease, 2016, 89, 10-22.	4.4	65
12	Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome. PLoS ONE, 2016, 11, e0151092.	2.5	18
13	A rapid <i>in vivo</i> screen for pancreatic ductal adenocarcinoma therapeutics. DMM Disease Models and Mechanisms, 2015, 8, 1201-1211.	2.4	14
14	Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Experimental Neurology, 2015, 264, 67-81.	4.1	59
15	3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates. ENeuro, 2015, 2, ENEURO.0001-15.2015.	1.9	53
16	Perivascular Fibroblasts Form the Fibrotic Scar after Contusive Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 13882-13887.	3.6	327
17	A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury. Experimental Neurology, 2013, 248, 170-182.	4.1	53
18	Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Experimental Neurology, 2013, 247, 653-662.	4.1	136

PANTELIS TSOULFAS

#	Article	IF	CITATIONS
19	Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Experimental Neurology, 2013, 248, 369-380.	4.1	61
20	Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria. Human Molecular Genetics, 2013, 22, 1601-1614.	2.9	64
21	Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Experimental Neurology, 2012, 233, 821-828.	4.1	49
22	Translational Regulation of Acetylcholinesterase by the RNA-binding Protein Pumilio-2 at the Neuromuscular Synapse. Journal of Biological Chemistry, 2011, 286, 36492-36499.	3.4	16
23	Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochemical and Biophysical Research Communications, 2010, 393, 812-817.	2.1	54
24	Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction. Chemico-Biological Interactions, 2008, 175, 26-29.	4.0	20
25	Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restorative Neurology and Neuroscience, 2007, 25, 65-76.	0.7	89
26	Gene delivery to the spinal cord: Comparison between lentiviral, adenoviral, and retroviral vector delivery systems. Journal of Neuroscience Research, 2006, 84, 553-567.	2.9	60
27	Functional Recovery in Traumatic Spinal Cord Injury after Transplantation of Multineurotrophin-Expressing Glial-Restricted Precursor Cells. Journal of Neuroscience, 2005, 25, 6947-6957.	3.6	273
28	Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Experimental Neurology, 2005, 195, 293-304.	4.1	63
29	Absence of Major Histocompatibility Complex Class I on Neural Stem Cells Does Not Permit Natural Killer Cell Killing and Prevents Recognition by Alloreactive Cytotoxic T Lymphocytes In Vitro. Stem Cells, 2004, 22, 1101-1110.	3.2	70
30	BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells. Experimental Neurology, 2004, 188, 205-223.	4.1	33
31	Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve. Experimental Neurology, 2004, 189, 422-425.	4.1	10
32	TrkC Overexpression Enhances Survival and Migration of Neural Stem Cell Transplants in the Rat Spinal Cord. Cell Transplantation, 2002, 11, 297-307.	2.5	38
33	TrkC overexpression enhances survival and migration of neural stem cell transplants in the rat spinal cord. Cell Transplantation, 2002, 11, 297-307.	2.5	11
34	Pluripotent Stem Cells Engrafted into the Normal or Lesioned Adult Rat Spinal Cord Are Restricted to a Glial Lineage. Experimental Neurology, 2001, 167, 48-58.	4.1	443
35	Retinoic Acid Combined with Neurotrophin-3 Enhances the Survival and Neurite Outgrowth of Embryonic Sympathetic Neurons. Experimental Biology and Medicine, 2001, 226, 766-775.	2.4	31
36	Hippocampal stem cells differentiate into excitatory and inhibitory neurons. European Journal of Neuroscience, 2000, 12, 677-688.	2.6	83

PANTELIS TSOULFAS

#	Article	IF	CITATIONS
37	TrkA Amino Acids Controlling Specificity for Nerve Growth Factor. Journal of Biological Chemistry, 2000, 275, 7870-7877.	3.4	10
38	Trk C Receptor Signaling Regulates Cardiac Myocyte Proliferation during Early Heart Development in Vivo. Developmental Biology, 2000, 226, 180-191.	2.0	49
39	An Immortalized, Type-1 Astrocyte of Mescencephalic Origin Source of a Dopaminergic Neurotrophic Factor. Journal of Molecular Neuroscience, 1998, 11, 209-222.	2.3	25
40	High Resolution Mapping of the Binding Site of TrkA for Nerve Growth Factor and TrkC for Neurotrophin-3 on the Second Immunoglobulin-like Domain of the Trk Receptors. Journal of Biological Chemistry, 1998, 273, 5829-5840.	3.4	65
41	Targeted deletion of all isoforms of the <i>trkC</i> gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates <i>trkC</i> in normal cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14776-14781.	7.1	192
42	Specificity Determinants in Neurotrophin-3 and Design of Nerve Growth Factor-Based trkC Agonists by Changing Central β-Strand Bundle Residues to Their Neurotrophin-3 Analogsâ€. Biochemistry, 1997, 36, 4775-4781.	2.5	30
43	The Neurotrophin Receptor p75 Binds Neurotrophin-3 on Sympathetic Neurons with High Affinity and Specificity. Journal of Neuroscience, 1997, 17, 5281-5287.	3.6	86
44	TrkC Isoforms with Inserts in the Kinase Domain Show Impaired Signaling Responses. Journal of Biological Chemistry, 1996, 271, 5691-5697.	3.4	63
45	Developmental Regulation of Full-length trkC in the Rat Sciatic Nerve. European Journal of Neuroscience, 1995, 7, 917-925.	2.6	42
46	The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron, 1993, 10, 975-990.	8.1	290
47	Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell, 1991, 67, 675-685.	28.9	201
48	Brain-wide analysis of the supraspinal connectome reveals anatomical correlates to functional recovery after spinal injury. ELife, 0, 11, .	6.0	10