Kathleen Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126232/publications.pdf

Version: 2024-02-01

1306789 1281420 11 179 7 11 citations g-index h-index papers 11 11 11 154 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	3-D Molecular Mixtures of Catalytically Functionalized [vinylSiO $<$ sub $>1.5<$ sub $>1.5<$ sub $>1.5<$ sub $>1.5<$ sub >1.5 sub	3.2	43
2	Oxygen effects on ω and α phase transformations in a metastable β Ti–Nb alloy. Acta Materialia, 2019, 181, 367-376.	3.8	43
3	[(4-NH ₂ C ₆ H ₄ SiO _{1.5}) ₆ (IPhSiO _{1.5}) and [(4-CH ₃ OC ₆ H ₄ SiO _{1.5}) ₆ (IPhSiO _{1.5} <td></td> <td></td>		
4	That Is an Average of the Corresponding Homopolymers. Macromolecules, 2013, 46, 7580-7590. Early oxidation behavior of Si-coated titanium. Corrosion Science, 2018, 140, 297-306.	3.0	21
5	Enhanced work hardening from oxygen-stabilized ω precipitates in an aged metastable \hat{I}^2 Ti-Nb alloy. Acta Materialia, 2021, 220, 117302.	3.8	19
6	Oxygen-induced refinement of \hat{l}_{\pm} precipitates in an aged metastable \hat{l}^2 Ti-15-333 alloy. Scripta Materialia, 2021, 205, 114206.	2.6	8
7	Role of oxygen on the precipitation and deformation behavior of an aged \hat{l}^2 Ti-15Mo alloy. Journal of Alloys and Compounds, 2022, 891, 161811.	2.8	7
8	Synthesis of acetoxyphenyl―and hydroxyphenyl―erminated polyfunctional T ₈ , T ₁₀ , T ₁₂ silsesquioxanes and initial studies on their use in the formation of highly crosslinked polyesters. Applied Organometallic Chemistry, 2013, 27, .	1.7	5
9	Influence of a silicon-bearing film on the early stage oxidation of pure titanium. Journal of Materials Science, 2017, 52, 9884-9894.	1.7	4
10	Optical image and Vickers hardness dataset for repair of 1080 steel using additive friction stir deposition of Aermet 100. Data in Brief, 2022, 41, 107862.	0.5	4
11	Data on the early oxidation of SiO2-coated pure Ti and bulk Ti5Si3 at 800 °C. Data in Brief, 2018, 20, 1263-1268.	0.5	3