List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8126067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, 2013, 107, 11-18.	2.5	174
2	Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials, 2010, 181, 1158-1162.	6.5	140
3	Removal of Natural Estrogens and Their Conjugates in Municipal Wastewater Treatment Plants: A Critical Review. Environmental Science & Technology, 2015, 49, 5288-5300.	4.6	137
4	A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 2007, 42, 401-408.	1.8	128
5	Removal of sulphate from aqueous solution using modified rice straw: Preparation, characterization and adsorption performance. Carbohydrate Polymers, 2011, 85, 571-577.	5.1	122
6	Soil microplastic pollution in an e-waste dismantling zone of China. Waste Management, 2020, 118, 291-301.	3.7	121
7	Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, 2014, 109, 134-142.	4.2	109
8	Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environmental Pollution, 2017, 225, 129-140.	3.7	95
9	Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem. Science of the Total Environment, 2018, 616-617, 107-116.	3.9	93
10	Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere, 2015, 119, 734-743.	4.2	83
11	Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Science of the Total Environment, 2018, 616-617, 647-657.	3.9	80
12	The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe ⁰ . Environmental Science: Nano, 2017, 4, 1544-1552.	2.2	78
13	Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid. Chemosphere, 2018, 206, 26-32.	4.2	75
14	Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecological Engineering, 2016, 92, 10-17.	1.6	68
15	Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environmental Pollution, 2017, 228, 128-139.	3.7	67
16	Degradation of tris(2-chloroethyl) phosphate (TCEP) in aqueous solution by using pyrite activating persulfate to produce radicals. Ecotoxicology and Environmental Safety, 2019, 174, 667-674.	2.9	62
17	Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China. Ecotoxicology and Environmental Safety, 2020, 195, 110521.	2.9	62
18	Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 2017, 239, 25-35.	2.6	61

#	Article	IF	CITATIONS
19	OPFRs and BFRs induced A549â€ ⁻ cell apoptosis by caspase-dependent mitochondrial pathway. Chemosphere, 2019, 221, 693-702.	4.2	60
20	Ferrihydrite transformation under the impact of humic acid and Pb: kinetics, nanoscale mechanisms, and implications for C and Pb dynamics. Environmental Science: Nano, 2019, 6, 747-762.	2.2	59
21	Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays) Tj ETQq1	1 0.78431 2.9	14 rgBT /Ovel
22	Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase. Science of the Total Environment, 2018, 627, 1389-1395.	3.9	57
23	Effect of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and its metabolites on cell viability, oxidative stress, and apoptosis of HepG2. Chemosphere, 2018, 193, 978-988.	4.2	54
24	The behavior of chromium and arsenic associated with redox transformation of schwertmannite in AMD environment. Chemosphere, 2019, 222, 945-953.	4.2	54
25	Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue. Science of the Total Environment, 2020, 729, 139055.	3.9	54
26	Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. Science of the Total Environment, 2021, 778, 146264.	3.9	54
27	Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. Science of the Total Environment, 2019, 677, 556-563.	3.9	51
28	Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Hydrometallurgy, 2017, 167, 58-65.	1.8	49
29	Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO2 nanocomposites: Mechanisms and pathways. Environment International, 2019, 127, 5-12.	4.8	49
30	Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage. PLoS ONE, 2018, 13, e0190010.	1.1	48
31	Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors. Ecotoxicology and Environmental Safety, 2019, 174, 524-531.	2.9	48
32	Rapid Degradation of Phenanthrene by Using Sphingomonas sp. GY2B Immobilized in Calcium Alginate Gel Beads. International Journal of Environmental Research and Public Health, 2009, 6, 2470-2480.	1.2	47
33	Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles. Chemical Engineering Journal, 2014, 244, 522-530.	6.6	47
34	Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. Science of the Total Environment, 2019, 668, 958-965.	3.9	46
35	Multiregional input-output analysis for energy-water nexus: A case study of Pearl River Delta urban agglomeration. Journal of Cleaner Production, 2020, 262, 121255.	4.6	45
36	Removal of heavy metals from acid mine drainage using chicken eggshells in column mode. Journal of Environmental Management, 2017, 188, 1-8.	3.8	44

#	Article	IF	CITATIONS
37	Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicology and Environmental Safety, 2019, 176, 162-169.	2.9	44
38	Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. Journal of Hazardous Materials, 2020, 387, 121708.	6.5	44
39	Mechanisms and pathways of debromination of polybrominated diphenyl ethers (PBDEs) in various nano-zerovalent iron-based bimetallic systems. Science of the Total Environment, 2019, 661, 18-26.	3.9	42
40	Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes. Applied Surface Science, 2016, 365, 280-290.	3.1	41
41	Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron. Environmental Pollution, 2017, 222, 331-337.	3.7	41
42	Cosolubilization of 4,4′-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles. Chemical Engineering Journal, 2015, 260, 74-82.	6.6	40
43	Fulvic acid induced the liberation of chromium from CrO42â^'-substituted schwertmannite. Chemical Geology, 2017, 475, 52-61.	1.4	40
44	Sample-preparation methods for direct and indirect analysis of natural estrogens. TrAC - Trends in Analytical Chemistry, 2015, 64, 149-164.	5.8	39
45	Debromination of polybrominated diphenyl ethers (PBDEs) and their conversion to polybrominated dibenzofurans (PBDFs) by UV light: Mechanisms and pathways. Journal of Hazardous Materials, 2018, 354, 1-7.	6.5	39
46	Identification of novel pathways for biotransformation of tetrabromobisphenol A by Phanerochaete chrysosporium, combined with mechanism analysis at proteome level. Science of the Total Environment, 2019, 659, 1352-1361.	3.9	39
47	Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14. International Biodeterioration and Biodegradation, 2014, 87, 75-80.	1.9	38
48	Regeneration of iron-montmorillonite adsorbent as an efficient heterogeneous Fenton catalytic for degradation of Bisphenol A: Structure, performance and mechanism. Chemical Engineering Journal, 2017, 328, 737-747.	6.6	38
49	Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. International Biodeterioration and Biodegradation, 2018, 128, 122-128.	1.9	38
50	Enhanced bioremediation of 2,3′,4,4′,5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar. Science of the Total Environment, 2021, 788, 147774.	3.9	38
51	Effects of single and combined copper/perfluorooctane sulfonate on sequencing batch reactor process and microbial community in activated sludge. Bioresource Technology, 2017, 238, 407-415.	4.8	37
52	Characteristics and proteomic analysis of pyrene degradation by Brevibacillus brevis in liquid medium. Chemosphere, 2017, 178, 80-87.	4.2	37
53	Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China. Ecotoxicology and Environmental Safety, 2018, 164, 474-483.	2.9	37
54	Reductive debromination of decabromodiphenyl ether by iron sulfide-coated nanoscale zerovalent iron: mechanistic insights from Fe(II) dissolution and solvent kinetic isotope effects. Environmental Pollution, 2019, 253, 161-170.	3.7	37

#	Article	IF	CITATIONS
55	Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development. Science of the Total Environment, 2019, 690, 1100-1109.	3.9	37
56	Effects of Pyrolysis Temperature and Holding Time on Physicochemical Properties of Swine-Manure-Derived Biochar. Waste and Biomass Valorization, 2020, 11, 613-624.	1.8	37
57	Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B. Science of the Total Environment, 2017, 609, 1161-1171.	3.9	36
58	Modeling kinetics of heavy metal release from field-contaminated soils: Roles of soil adsorbents and binding sites. Chemical Geology, 2019, 506, 187-196.	1.4	36
59	Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils. Science of the Total Environment, 2019, 657, 644-656.	3.9	35
60	Homogeneous photocatalytic degradation of sulfamethazine induced by Fe(III)-carboxylate complexes: Kinetics, mechanism and products. Chemical Engineering Journal, 2020, 402, 126122.	6.6	35
61	Formation and degradation of polybrominated dibenzofurans (PBDFs) in the UV photolysis of polybrominated diphenyl ethers (PBDEs) in various solutions. Chemical Engineering Journal, 2018, 337, 333-341.	6.6	34
62	Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: Performance, surface reaction mechanism and sulfate radical-mediated degradation pathway. Environmental Pollution, 2020, 260, 113983.	3.7	34
63	Passivation of metal-sulfide tailings by covalent coating. Minerals Engineering, 2013, 42, 36-42.	1.8	33
64	Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma, 2016, 281, 21-29.	2.3	33
65	Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. Journal of Environmental Sciences, 2021, 107, 65-76.	3.2	33
66	Estimation of Water Solubility of Polycyclic Aromatic Hydrocarbons Using Quantum Chemical Descriptors and Partial Least Squares. QSAR and Combinatorial Science, 2008, 27, 618-626.	1.5	32
67	Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Minerals Engineering, 2011, 24, 833-838.	1.8	32
68	Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environmental Science and Pollution Research, 2018, 25, 17645-17653.	2.7	32
69	Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses. Chemical Engineering Journal, 2019, 374, 263-273.	6.6	32
70	Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World Journal of Microbiology and Biotechnology, 2007, 23, 647-654.	1.7	31
71	Regulation of c-Myc and Bcl-2 Induced Apoptosis of Human Bronchial Epithelial Cells by Zinc Oxide Nanoparticles. Journal of Biomedical Nanotechnology, 2012, 8, 669-675.	0.5	30
72	Competitive solubilization of 4,4′-dibromodiphenyl ether, naphthalene, and pyrene mixtures in Triton X series surfactant micelles: The effect of hydrophilic chains. Chemical Engineering Journal, 2015, 274, 84-93.	6.6	30

#	Article	IF	CITATIONS
73	Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge. Chemosphere, 2019, 222, 517-526.	4.2	30
74	Rapid debromination of polybrominated diphenyl ethers (PBDEs) by zero valent metal and bimetals: Mechanisms and pathways assisted by density function theory calculation. Environmental Pollution, 2018, 240, 745-753.	3.7	29
75	Molecular characteristics, proton dissociation properties, and metal binding properties of soil organic matter: A theoretical study. Science of the Total Environment, 2019, 656, 521-530.	3.9	29
76	Accumulation of Hydrocarbons by Maize (<i>Zea mays</i> L.) inÂRemediation of Soils Contaminated with Crude Oil. International Journal of Phytoremediation, 2015, 17, 693-700.	1.7	28
77	Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B. Ecotoxicology and Environmental Safety, 2016, 125, 35-42.	2.9	28
78	Debromination of polybrominated diphenyl ethers (PBDEs) by zero valent zinc: Mechanisms and predicting descriptors. Journal of Hazardous Materials, 2018, 352, 165-171.	6.5	28
79	Uptake and Distribution of Cd in Sweet Maize Grown on Contaminated Soils: A Field-Scale Study. Bioinorganic Chemistry and Applications, 2013, 2013, 1-8.	1.8	27
80	Enhanced photoelectrochemical degradation of Ibuprofen and generation of hydrogen via BiOI-deposited TiO2 nanotube arrays. Science of the Total Environment, 2018, 633, 1198-1205.	3.9	27
81	Sulfidation enhanced reduction of polybrominated diphenyl ether and Pb(II) combined pollutants by nanoscale zerovalent iron: Competitive reaction between pollutants and electronic transmission mechanism. Chemical Engineering Journal, 2020, 395, 125085.	6.6	27
82	Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zerovalent iron: Compound effects and removal mechanism. Journal of Hazardous Materials, 2021, 414, 125555.	6.5	27
83	Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. Journal of Applied Microbiology, 2016, 121, 196-206.	1.4	26
84	Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses. Science of the Total Environment, 2019, 687, 732-740.	3.9	26
85	Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution. Environmental Research, 2020, 186, 109490.	3.7	26
86	Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. Ecotoxicology and Environmental Safety, 2022, 229, 113073.	2.9	26
87	Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors. Science of the Total Environment, 2007, 373, 289-296.	3.9	25
88	Distribution, fractionation, and contamination assessment of heavy metals in paddy soil related to acid mine drainage. Paddy and Water Environment, 2017, 15, 553-562.	1.0	25
89	Effects of rhamnolipids on the cell surface characteristics of Sphingomonas sp. GY2B and the biodegradation of phenanthrene. RSC Advances, 2017, 7, 24321-24330.	1.7	25
90	Chromate(VI)-induced homogeneous oxidation and photolysis of aqueous tetracycline: Kinetics and mechanism. Chemical Engineering Journal, 2020, 379, 122276.	6.6	25

#	Article	IF	CITATIONS
91	Fe- and S-Metabolizing Microbial Communities Dominate an AMD-Contaminated River Ecosystem and Play Important Roles in Fe and S Cycling. Geomicrobiology Journal, 2017, 34, 695-705.	1.0	24
92	Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Chemosphere, 2019, 232, 195-203.	4.2	24
93	Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis. Science of the Total Environment, 2020, 713, 136598.	3.9	24
94	Kinetics and mechanisms of phenolic compounds by Ferrate(VI) assisted with density functional theory. Journal of Hazardous Materials, 2021, 415, 125563.	6.5	24
95	A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. Journal of Hazardous Materials, 2022, 422, 126952.	6.5	24
96	Removal of chromium (VI) from electroplating wastewater using an anion exchanger derived from rice straw. Environmental Technology (United Kingdom), 2013, 34, 7-14.	1.2	23
97	Photodegradation of 4,4′-dibrominated diphenyl ether in Triton X-100 micellar solution. Chemosphere, 2017, 180, 423-429.	4.2	23
98	Biodegradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd2+. Environmental Science and Pollution Research, 2017, 24, 11415-11424.	2.7	23
99	The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. Journal of Hazardous Materials, 2011, 186, 978-983.	6.5	22
100	Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil. Chemosphere, 2016, 144, 583-590.	4.2	22
101	iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. Environmental Pollution, 2018, 242, 1758-1767.	3.7	22
102	QSPR STUDY ON DIRECT PHOTOLYSIS HALF-LIVES OF PAHs IN WATER SURFACE. Journal of Theoretical and Computational Chemistry, 2005, 04, 811-822.	1.8	21
103	Synergistic solubilization of low-brominated diphenyl ether mixtures in nonionic surfactant micelles. Journal of Molecular Liquids, 2016, 223, 252-260.	2.3	21
104	Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments. Science of the Total Environment, 2019, 649, 563-570.	3.9	21
105	Bacterial communities and functional genes stimulated during phenanthrene degradation in soil by bio-microcapsules. Ecotoxicology and Environmental Safety, 2021, 212, 111970.	2.9	21
106	Effects of methanol on the performance of a novel BDE-47 degrading bacterial consortium QY2 in the co-metabolism process. Journal of Hazardous Materials, 2021, 415, 125698.	6.5	21
107	Efficient removal of organophosphate esters by ligand functionalized MIL-101 (Fe): Modulated adsorption and DFT calculations. Chemosphere, 2022, 302, 134881.	4.2	21
108	Do we underestimate the concentration of estriol in raw municipal wastewater?. Environmental Science and Pollution Research, 2015, 22, 4753-4758.	2.7	20

#	Article	IF	CITATIONS
109	Isotope geochemistry, hydrochemistry, and mineralogy of a river affected by acid mine drainage in a mining area, South China. RSC Advances, 2017, 7, 43310-43318.	1.7	20
110	Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture. Environmental Pollution, 2018, 242, 738-748.	3.7	20
111	Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Journal of Environmental Sciences, 2019, 80, 218-228.	3.2	20
112	Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. Environmental Science and Pollution Research, 2021, 28, 2822-2834.	2.7	20
113	Effects of Sphingomonas sp. GY2B on the structure and physicochemical properties of stearic acid-modified montmorillonite in the biodegradation of phenanthrene. Applied Clay Science, 2018, 156, 36-44.	2.6	19
114	Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. Environmental Science and Pollution Research, 2019, 26, 617-627.	2.7	19
115	Cellular changes of microbial consortium GY1 during decabromodiphenyl ether (BDE-209) biodegradation and identification of strains responsible for BDE-209 degradation in GY1. Chemosphere, 2020, 249, 126205.	4.2	19
116	Influence of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium on the cellular characteristics of Pycnoporus sanguineus during their removal and reduction. Ecotoxicology and Environmental Safety, 2017, 142, 388-398.	2.9	18
117	Pyrene biodegradation with layer-by-layer assembly bio-microcapsules. Ecotoxicology and Environmental Safety, 2017, 138, 9-15.	2.9	18
118	Debromination of polybrominated biphenyls (PBBs) by zero valent metals and iron-based bimetallic particles: Mechanisms, pathways and predicting descriptor. Chemical Engineering Journal, 2018, 351, 773-781.	6.6	18
119	Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions. Chemosphere, 2020, 255, 126938.	4.2	18
120	Fate of oxalic-acid-intervened arsenic during Fe(II)-induced transformation of As(V)-bearing jarosite. Science of the Total Environment, 2020, 719, 137311.	3.9	18
121	Transcriptome profiling of Pseudomonas aeruginosa YH reveals mechanisms of 2, 2′, 4, 4′-tetrabrominated diphenyl ether tolerance and biotransformation. Journal of Hazardous Materials, 2021, 403, 124038.	6.5	18
122	Effects of aging on surface properties and endogenous copper and zinc leachability of swine manure biochar and its composite with alkali-fused fly ash. Waste Management, 2021, 126, 400-410.	3.7	18
123	Spatial distribution characteristics of the microbial community and multi-phase distribution of toxic metals in the geochemical gradients caused by acid mine drainage, South China. Science of the Total Environment, 2021, 774, 145660.	3.9	18
124	Photodebromination behaviors of polybrominated diphenyl ethers in methanol/water systems: Mechanisms and predicting descriptors. Science of the Total Environment, 2017, 595, 666-672.	3.9	17
125	Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method. Ecotoxicology and Environmental Safety, 2019, 170, 300-305.	2.9	17
126	Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems. Journal of Hazardous Materials, 2010, 177, 1145-1149.	6.5	16

#	Article	IF	CITATIONS
127	Bioremediation of Petroleum-Contaminated Acid Soil by a Constructed Bacterial Consortium Immobilized on Sawdust: Influences of Multiple Factors. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	16
128	Role of Dissolved Organic Matter in the Release of Chromium from Schwertmannite: Kinetics, Repartition, and Mechanisms. Journal of Environmental Quality, 2017, 46, 1088-1097.	1.0	16
129	Effects of surfactant on the degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by nanoscale Ag/Fe particles: Kinetics, mechanisms and intermediates. Environmental Pollution, 2019, 245, 780-788.	3.7	16
130	Effect of nitrate on the phototreatment of Triton X-100 simulated washing waste containing 4,4′-dibromodiphenyl ether: Kinetics, products and toxicity assessment. Science of the Total Environment, 2020, 732, 139247.	3.9	16
131	Degradation of trichloroethylene by photoelectrochemically activated persulfate. Chemosphere, 2020, 254, 126796.	4.2	16
132	Adsorption of Organic Compounds by Biomass Chars: Direct Role of Aromatic Condensation (Ring) Tj ETQq0 0 0 r Technology, 2021, 55, 1594-1603.	rgBT /Ove 4.6	rlock 10 Tf 5 16
133	Estimated human excretion rates of natural estrogens calculated from their concentrations in raw municipal wastewater and its application. Environmental Science and Pollution Research, 2015, 22, 9554-9562.	2.7	15
134	Photodegradation behaviors of polychlorinated biphenyls in methanol by UV-irradiation: Solvent adducts and sigmatropic arrangement. Chemosphere, 2018, 193, 861-868.	4.2	15
135	Microbial Reduction of Cr (VI)-loaded Schwertmannite by <i>Shewanella oneidensis</i> MR-1. Geomicrobiology Journal, 2018, 35, 727-734.	1.0	15
136	Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Ecotoxicology and Environmental Safety, 2018, 154, 45-51.	2.9	15
137	Pyrene Degradation by Mycobacterium gilvum: Metabolites and Proteins Involved. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	15
138	Degradation of tris(2-chloroethyl) phosphate (TCEP) by thermally activated persulfate: Combination of experimental and theoretical study. Science of the Total Environment, 2022, 809, 152185.	3.9	15
139	Dechlorination pathways of diverse chlorinated aromatic pollutants conducted by Dehalococcoides sp. strain CBDB1. Science of the Total Environment, 2010, 408, 2549-2554.	3.9	14
140	A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene. World Journal of Microbiology and Biotechnology, 2013, 29, 1685-1694.	1.7	14
141	Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide. Chemosphere, 2020, 241, 124991.	4.2	14
142	Mechanisms of Cr(VI) adsorption on schwertmannite under environmental disturbance: Changes in surface complex structures. Journal of Hazardous Materials, 2021, 416, 125781.	6.5	13
143	Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant. Applied Biochemistry and Biotechnology, 2016, 178, 1325-1338.	1.4	12
144	Debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by synthetic Pd/FeO and Cu/FeO in different protic solvents. Chemosphere, 2018, 212, 946-953.	4.2	12

#	Article	IF	CITATIONS
145	The formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs): Effects of bromination arrangement and level. Journal of Hazardous Materials, 2020, 399, 123004.	6.5	12
146	Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium. Journal of Hazardous Materials, 2021, 402, 123717.	6.5	12
147	Photodegradation of 2,4,4′-tribrominated diphenyl ether in various surfactant solutions: kinetics, mechanisms and intermediates. Environmental Sciences: Processes and Impacts, 2018, 20, 806-812.	1.7	11
148	Elucidation of desferrioxamine B on the liberation of chromium from schwertmannite. Chemical Geology, 2019, 513, 133-142.	1.4	11
149	Oxalate-Induced Photoreduction Dissolution and Transformation of Schwertmannite: Change of Mineral Phase and Elemental Fate. ACS Earth and Space Chemistry, 2020, 4, 2031-2040.	1.2	11
150	Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study. Science of the Total Environment, 2021, 792, 148523.	3.9	11
151	Photocatalysis of Tris-(2-chloroethyl) phosphate by ultraviolet driven peroxymonosulfate oxidation process: Removal performance, energy evaluation and toxicity on bacterial metabolism network. Chemical Engineering Journal, 2021, 423, 130261.	6.6	11
152	of Polychlorinated Biphenyls by Using Quantum Chemical Descriptors and Partial Least Squares.	0.9	10 (xmins:n
153	Journal of Chemistry, 2013, 2013, 1-8. A bio-hybrid material for adsorption and degradation of phenanthrene: bacteria immobilized on sawdust coated with a silica layer. RSC Advances, 2016, 6, 107189-107199.	1.7	10
154	Photochemical reactivity of nitrogen-doped biochars under simulated sunlight irradiation: Generation of singlet oxygen. Journal of Hazardous Materials, 2021, 410, 124547.	6.5	10
155	Arsenic Partitioning during Schwertmannite Dissolution and Recrystallization in the Presence of Fe(II) and Oxalic Acid. ACS Earth and Space Chemistry, 2021, 5, 1058-1070.	1.2	10
156	Quantitative Structure–Activity Relationships for Enzymatic Activity of Chloroperoxidase on Metabolizing Organophosphorus Pesticides. QSAR and Combinatorial Science, 2007, 26, 182-188.	1.5	9
157	Estimation of n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons by quantum chemical descriptors. Open Chemistry, 2008, 6, 310-318.	1.0	9
158	Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite. Environmental Science and Pollution Research, 2018, 25, 15492-15506.	2.7	9
159	Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides. Environmental Sciences: Processes and Impacts, 2018, 20, 1691-1696.	1.7	9
160	Modeling Sorptive Fractionation of Organic Matter at the Mineralâ€Water Interface. Soil Science Society of America Journal, 2019, 83, 107-117.	1.2	9
161	Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr)oxides systems. Chemosphere, 2020, 244, 125517.	4.2	9
162	Co-metabolic degradation of tetrabromobisphenol A by Pseudomonas aeruginosa and its auto-poisoning effect caused during degradation process. Ecotoxicology and Environmental Safety, 2020, 202, 110919.	2.9	9

#	Article	IF	CITATIONS
163	Ecological risk assessment of trace metals and comprehensive contamination indicators in the coastal waters of Macao, South China Sea. Marine Pollution Bulletin, 2020, 154, 110718.	2.3	9
164	Simultaneous adsorption of Cd2+ and photocatalytic degradation of tris-(2-chloroisopropyl) phosphate (TCPP) by mesoporous TiO2. Chemosphere, 2021, 267, 129238.	4.2	9
165	Soil rehabilitation shaped different patterns of bacterial and archaeal community in AMD-irrigated paddy soil. Chemosphere, 2021, 263, 128259.	4.2	9
166	Application of Ag/TiO2 in photocatalytic degradation of 2,2′,4,4′-tetrabromodiphenyl ether in simulated washing waste containing Triton X-100. Journal of Environmental Chemical Engineering, 2021, 9, 105077.	3.3	9
167	Effects of ferric ion on the photo-treatment of nonionic surfactant Brij35 washing waste containing 2,2′,4,4′-tetrabromodiphenyl ether. Journal of Hazardous Materials, 2021, 415, 125572.	6.5	9
168	Integrated ecological risk assessment of heavy metals in an oil shale mining area after restoration. Journal of Environmental Management, 2021, 300, 113797.	3.8	9
169	Effects of interaction between montmorillonite and Sphingomonas sp. GY2B on the physical and chemical properties of montmorillonite in the clay-modulated biodegradation of phenanthrene. Environmental Chemistry, 2018, 15, 296.	0.7	9
170	Synergy of oxalic acid and sunlight triggered Cr(III)-bearing Schwertmannite transformation: Reaction mechanism, Cr and C spatial distribution and speciation on the nano scale. Geochimica Et Cosmochimica Acta, 2022, 329, 70-86.	1.6	9
171	Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	8
172	Photocatalytic degradation of polybrominated biphenyls (PBBs) on metal doped TiO ₂ nanocomposites in aqueous environments: mechanisms and solution effects. Environmental Science: Nano, 2019, 6, 1111-1120.	2.2	8
173	Degradation of Tris (2-Chloroethyl) Phosphate via UV/Fe(III) Photocatalysis: Kinetics, Products, and Toxicity Assessment. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	8
174	Spatial and temporal variations of metal fractions in paddy soil flooding with acid mine drainage. Environmental Research, 2022, 212, 113241.	3.7	8
175	Solubilization of 4,4′-dibromodiphenyl ether under combined TX-100 and cosolvents. Environmental Science and Pollution Research, 2015, 22, 3856-3864.	2.7	7
176	Photoassisted degradation of 2,2′,4,4′-tetrabrominated diphenyl ether in simulated soil washing system containing Triton X series surfactants. Environmental Pollution, 2020, 265, 115005.	3.7	7
177	Editorial: Bioremediation of Chemical Pesticides Polluted Soil. Frontiers in Microbiology, 2021, 12, 682343.	1.5	7
178	Reductive dissolution of Pb-Zn jarosite under near-neutral conditions. Chemical Geology, 2021, 579, 120338.	1.4	7
179	Kinetics and Mechanism of Cr(VI) Sorption from Aqueous Solution on a Modified Lignocellulosic Material. Environmental Engineering Science, 2013, 30, 672-680.	0.8	6
180	Determination of Decabrominated Diphenyl Ether in Soils by Soxhlet Extraction and High Performance Liquid Chromatography. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	6

#	Article	IF	CITATIONS
181	The Effect of Pollination on Cd Phytoextraction From Soil by Maize (<i>Zea mays</i> L.). International Journal of Phytoremediation, 2015, 17, 945-950.	1.7	6
182	Degradation of 2,2′,4,4′-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions. Journal of Environmental Sciences, 2019, 83, 133-143.	3.2	6
183	Debromination of polybrominated diphenyl ethers (PBDEs) by palladized zerovalent zinc particles: Influence factors, pathways and mechanism. Chemosphere, 2020, 253, 126726.	4.2	6
184	Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and <i>in situ</i> chemical oxidation processes: a field test. RSC Advances, 2021, 11, 4237-4246.	1.7	6
185	Sulfate migration and transformation characteristics in paddy soil profile affected by acid mine drainage. Environmental Research, 2021, 200, 111732.	3.7	6
186	Enhanced tris-(2-chloroisopropyl) phosphate degradation through ultraviolet driven peroxymonosulfate process: Kinetics, mechanism, residual toxicity assessment of intermediates products by proteomics. Science of the Total Environment, 2021, 786, 147583.	3.9	6
187	Molecular-scale study of Cr(<scp>vi</scp>) adsorption onto lepidocrocite facets by EXAFS, <i>in situ</i> ATR-FTIR, theoretical frequency calculations and DFT+U techniques. Environmental Science: Nano, 2022, 9, 568-581.	2.2	6
188	Differential regulation and the underlying mechanisms of clay minerals to Escherichia coli under the stress of polymyxin B: Comparing halloysite with kaolinite. Chemosphere, 2021, 265, 129095.	4.2	5
189	Investigation of the Interactions Occurring Between Cr(VI) and Citric Acid-Schwertmannite Composites: A Macroscopic and In Situ ATR-FTIR Study. ACS Earth and Space Chemistry, 2022, 6, 391-402.	1.2	5
190	ESTIMATION OF SOIL SORPTION COEFFICIENTS OF POLYCYCLIC AROMATIC HYDROCARBONS BY QUANTUM CHEMICAL DESCRIPTORS. Journal of Theoretical and Computational Chemistry, 2008, 07, 67-79.	1.8	4
191	Experimental and theoretical investigations on debromination pathways of polybrominated biphenyls (PBBs) under ultraviolet light. Chemosphere, 2018, 212, 1-7.	4.2	4
192	Hierarchical health risk assessment and influence factors of an ecological post-restoration oil shale mining area based on metal bioavailability. Science of the Total Environment, 2022, 821, 153480.	3.9	4
193	QUANTITATIVE STRUCTURE–PROPERTY RELATIONSHIPS ON DISSOLVABILITY OF PCDD/Fs USING QUANTUM CHEMICAL DESCRIPTORS AND PARTIAL LEAST SQUARES. Journal of Theoretical and Computational Chemistry, 2010, 09, 9-22.	1.8	3
194	Biodegradation Kinetics of Phenanthrene by a Fusant Strain. Current Microbiology, 2012, 65, 225-230.	1.0	3
195	Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation. Ecotoxicology and Environmental Safety, 2020, 202, 110921.	2.9	3
196	Rapid biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by Achromobacter xylosoxidans GYP4. , 0, 162, 353-363.		3
197	ESTIMATION OF DISSOLVABILITY OF CHLORIC AND ALKYL BENZENE DERIVATIVES USING QUANTUM CHEMICAL DESCRIPTORS AND PARTIAL LEAST SQUARES. Journal of Theoretical and Computational Chemistry, 2008, 07, 989-999.	1.8	2
198	Interactions between polycyclic aromatic hydrocarbons (PAHs)-degrading strain Sphingomonas sp.		2

GY2B and nano bamboo charcoal. , 0, 211, 221-228.

#	Article	IF	CITATIONS
199	Mechanism and formation process of schwertmannite under electrochemical deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126366.	2.3	2
200	Improved extraction of acid-insoluble monosulfide minerals by stannous chloride reduction and its application to the separation of mono- and disulfide minerals in the presence of ferric iron. Science of the Total Environment, 2021, 785, 147367.	3.9	2
201	Removal of polychlorinated biphenyls and recycling of tween-80 in soil washing eluents. , 0, 64, 109-117.		2
202	Removal of nitrate and phosphate from aqueous solution by modified corn straw: characteristics and mechanism. , 0, 80, 288-296.		2
203	Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes, 2022, 10, 718.	1.3	2
204	Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. Journal of Environmental Sciences, 2023, 126, 612-620.	3.2	2
205	Cadmium ions removal from acid aqueous water by chicken eggshells. , 0, 67, 215-222.		1
206	Effect of anthraquinone-2,6-disulfonate on the photolysis of 2,4,4′-tribromophenylphenyl ether. Photochemical and Photobiological Sciences, 2017, 16, 908-915.	1.6	0