Maria A Vincenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/812598/publications.pdf

Version: 2024-02-01

257101 276539 1,807 80 24 41 h-index citations g-index papers 80 80 80 2024 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nonlinear microscopy of lead iodide nanosheets. Optics Express, 2022, 30, 4793.	1.7	O
2	Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing. Nature Communications, 2022, 13, 741.	5.8	29
3	Design of vanadium-dioxide-based resonant structures for tunable optical response. Optics Letters, 2022, 47, 2286.	1.7	4
4	Harmonic generation from gold nanolayers: bound and hot electron contributions to nonlinear dispersion. Optics Express, 2021, 29, 8581.	1.7	7
5	Tuning the optical response of a dielectric grating using vanadium-dioxide as a phase-change material. , 2021, , .		O
6	Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces. Nature Communications, 2021, 12, 5833.	5.8	25
7	Reconfigurable nonlinear response of dielectric and semiconductor metasurfaces. Nanophotonics, 2021, 10, 4209-4221.	2.9	29
8	Vertical Second Harmonic Generation in Asymmetric Dielectric Nanoantennas. IEEE Photonics Journal, 2020, 12, 1-7.	1.0	25
9	Electrodynamics of conductive oxides: Intensity-dependent anisotropy, reconstruction of the effective dielectric constant, and harmonic generation. Physical Review A, 2020, 101, .	1.0	20
10	ENZ materials and anisotropy: enhancing nonlinear optical interactions at the nanoscale. Optics Express, 2020, 28, 31180.	1.7	11
11	Graphene-Based Cylindrical Pillar Gratings for Polarization-Insensitive Optical Absorbers. Applied Sciences (Switzerland), 2019, 9, 2528.	1.3	11
12	Harmonic Generation in Mie-Resonant GaAs Nanowires. , 2019, , .		0
13	Second-Harmonic Generation in Mie-Resonant GaAs Nanowires. Applied Sciences (Switzerland), 2019, 9, 3381.	1.3	15
14	Broadband and Efficient Second-Harmonic Generation from a Hybrid Dielectric Metasurface/Semiconductor Quantum-Well Structure. ACS Photonics, 2019, 6, 1458-1465.	3.2	26
15	Enhancing nonlinear processes from dielectric nanoantennas: the role of the substrate. , 2019, , .		O
16	Boosting Second Harmonic Radiation from AlGaAs Nanoantennas with Epsilon-Near-Zero Materials. Applied Sciences (Switzerland), 2018, 8, 2212.	1.3	20
17	A Hybrid Dielectric-Semiconductor Metasurface for Efficient Second-Harmonic Generation., 2018,,.		0
18	Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Scientific Reports, 2018, 8, 9335.	1.6	30

#	Article	IF	CITATIONS
19	Reevaluation of radiation reaction and consequences for light-matter interactions at the nanoscale. Optics Express, 2018, 26, 18055.	1.7	1
20	Enhanced Harmonic Generation in Metal-Insulator-Metal Nanostructures. , 2018, , .		0
21	Nonlinear dynamics of counter-propagating beams in epsilon-near-zero films. , 2018, , .		O
22	Unraveling delocalized electrons in metal induced gap states from second harmonics. Applied Physics Letters, 2017, 111, .	1.5	3
23	Non-collinear counter-propagating beams in epsilon-near-zero films: enhancement and inhibition of nonlinear optical processes. Journal of Optics (United Kingdom), 2017, 19, 124015.	1.0	2
24	Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light: Science and Applications, 2017, 6, e17060-e17060.	7.7	130
25	Observation of nonlocal optical response in doped-cadmium-oxide epsilon-near-zero thin films. , 2017, ,		0
26	Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions. Optics Express, 2017, 25, 3980.	1.7	13
27	Surface-plasmon excitation of second-harmonic light: emission and absorption. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 633.	0.9	6
28	Observation of Third Harmonic Enhancement Due to Tunneling at a Metal-Insulator-Metal Junction. , 2017, , .		0
29	A Second Harmonic Technique to Determine Metal-Induced-Gap-State Density. , 2017, , .		0
30	Optically transparent microwave screens based on engineered graphene layers. Optics Express, 2016, 24, 22788.	1.7	55
31	Tuning Fano resonances of graphene-based gratings. , 2016, , .		0
32	Absorption of harmonic light in plasmonic nanostructures. , 2016, , .		1
33	Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control. Optics Letters, 2016, 41, 3611.	1.7	4
34	On the origin of third harmonic light from hybrid metal-dielectric nanoantennas. Journal of Optics (United Kingdom), 2016, 18, 115002.	1.0	9
35	Tuning infrared guided-mode resonances with graphene. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 426.	0.9	24
36	Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene. Scientific Reports, 2015, 5, 17083.	1.6	37

#	Article	ΙF	Citations
37	Optically transparent graphene-based Salisbury screen microwave absorber. , 2015, , .		3
38	Graphene-based perfect optical absorbers harnessing guided mode resonances. Optics Express, 2015, 23, 21032.	1.7	91
39	Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Applied Physics Letters, 2015, 106, .	1.5	126
40	Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Optics Express, 2015, 23, 1715.	1.7	37
41	Nonlinear Optical Interactions in \$\$varepsilon \$\$-Near-Zero Materials: Second and Third Harmonic Generation. Springer Series in Materials Science, 2015, , 117-131.	0.4	1
42	Third harmonic generation in ultrathin epsilon-near-zero media. , 2015, , .		0
43	Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles. Applied Physics Letters, 2014, 105, .	1.5	18
44	Second-harmonic double-resonance cones in dispersive hyperbolic metamaterials. Physical Review B, $2014, 89, .$	1.1	39
45	Nonlocal and quantum-tunneling contributions to harmonic generation in nanostructures: Electron-cloud-screening effects. Physical Review A, 2014, 90, .	1.0	24
46	A quantum tunneling theory for nanophotonics. Proceedings of SPIE, 2014, , .	0.8	2
47	Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings. Optics Express, 2014, 22, 31511.	1.7	110
48	Nonlinear quantum tunneling effects in nanoplasmonic environments: two-photon absorption and harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2014, 31, A13.	0.9	30
49	Directed Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays.	4.0	35
50	Quantum conductivity for metal–insulator–metal nanostructures. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 259.	0.9	45
51	Tailoring Absorption in Metal Gratings with Resonant Ultrathin Bridges. Plasmonics, 2013, 8, 1445-1456.	1.8	6
52	Beaming and filtering at terahertz frequencies in liquid crystal filled metallic grating. , 2013, , .		2
53	2D plasmonic gold nano-patches for linear and nonlinear applications. Microelectronic Engineering, 2013, 111, 234-237.	1.1	3
54	Electric field enhancement in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>É></mml:mi></mml:math> -near-zero slabs under TM-polarized oblique incidence. Physical Review B, 2013, 87, .	1.1	102

#	Article	IF	Citations
55	Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties. Physical Review B, 2013, 87, .	1.1	72
56	Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Optics Letters, 2013, 38, 3550.	1.7	93
57	Nonlinear dynamics in low permittivity media: the impact of losses. Optics Express, 2013, 21, 29949.	1.7	18
58	Nanowire metal-insulator-metal plasmonic devices. , 2013, , .		7
59	Fabrication of doubly resonant plasmonic nanopatch arrays on graphene. Applied Physics Letters, 2013, 102, 231111.	1.5	19
60	Novel Plasmonic Bio-Sensing System Based on Two-Dimensional Gold Patch Arrays for Linear and Nonlinear Regimes. Advances in Science and Technology, 2012, 81, 15-19.	0.2	0
61	Wideband plasmonic beam steering in metal gratings. Optics Letters, 2012, 37, 271.	1.7	13
62	Deep-subwavelength waveguiding via inhomogeneous second-harmonic generation. Optics Letters, 2012, 37, 3093.	1.7	4
63	Color control through plasmonic metal gratings. Applied Physics Letters, 2012, 100, .	1.5	28
64	Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches. Applied Physics Letters, 2012, 101, .	1.5	21
65	Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells. New Journal of Physics, 2012, 14, 103016.	1.2	41
66	Anomalous plasmonic band gap formation in two-dimensional slit arrays with different periods. , 2011, , .		1
67	Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths. Optics Express, 2011, 19, 2064.	1.7	47
68	Experimental demonstration of a novel bioâ€'sensing platform via plasmonic band gap formation in gold nanoâ€'patch arrays. Optics Express, 2011, 19, 21385.	1.7	36
69	Enhanced second-harmonic generation from resonant GaAs gratings. Optics Letters, 2011, 36, 704.	1.7	20
70	Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps. Optics Letters, 2011, 36, 903.	1.7	21
71	Nonlinear response of GaAs gratings in the extraordinary transmission regime. Optics Letters, 2011, 36, 4674.	1.7	2
72	Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sensors and Actuators B: Chemical, 2011, 160, 1056-1062.	4.0	37

#	Article	IF	CITATIONS
73	Third harmonic generation at 223 nm in the metallic regime of GaP. Applied Physics Letters, 2011, 98, 111105.	1.5	17
74	Efficient plasmonic nanostructures for thin film solar cells. , 2010, , .		8
75	Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. Journal of Applied Physics, 2009, 105, .	1.1	22
76	Beam steering from resonant subwavelength slits filled with a nonlinear material. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 301.	0.9	30
77	Investigation of the Interaction of Surface Plasmons (SP) with an Electro Optic Polymer and Development of SP Optical Devices. , 2008, , .		O
78	Second harmonic generation from nanoslits in metal substrates: applications to palladium-based H ₂ sensor. Journal of Nanophotonics, 2008, 2, 021851.	0.4	21
79	Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors. Journal of Applied Physics, 2008, 103, .	1.1	14
80	Fabry-Perot microcavity sensor for H2-breath-test analysis. Journal of Applied Physics, 2007, 102, 074501.	1.1	4