Antonis E Koromilas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8125127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-α. Oncogene, 1999, 18, 5727-5737.	5.9	255
2	Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3Â. Genes and Development, 2004, 18, 261-277.	5.9	232
3	Characterization of Transgenic Mice with Targeted Disruption of the Catalytic Domain of the Double-stranded RNA-dependent Protein Kinase, PKR. Journal of Biological Chemistry, 1999, 274, 5953-5962.	3.4	211
4	The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene, 1999, 18, 2690-2702.	5.9	207
5	Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell, 2016, 18, 79-90.	11.1	206
6	A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell, 2017, 68, 885-900.e6.	9.7	135
7	Double-Stranded-RNA-Activated Protein Kinase PKR Enhances Transcriptional Activation by Tumor Suppressor p53. Molecular and Cellular Biology, 1999, 19, 2475-2484.	2.3	134
8	Translational Control during Endoplasmic Reticulum Stress beyond Phosphorylation of the Translation Initiation Factor eIF2α. Journal of Biological Chemistry, 2014, 289, 12593-12611.	3.4	120
9	Initiation of Protein Synthesis by Hepatitis C Virus Is Refractory to Reduced eIF2 · GTP · Met-tRNAiMetTernary Complex Availability. Molecular Biology of the Cell, 2006, 17, 4632-4644.	2.1	114
10	A Self-defeating Anabolic Program Leads to β-Cell Apoptosis in Endoplasmic Reticulum Stress-induced Diabetes via Regulation of Amino Acid Flux. Journal of Biological Chemistry, 2013, 288, 17202-17213.	3.4	105
11	Akt Determines Cell Fate Through Inhibition of the PERK-eIF2α Phosphorylation Pathway. Science Signaling, 2011, 4, ra62.	3.6	102
12	Roles of the translation initiation factor elF2 \hat{i} ± serine 51 phosphorylation in cancer formation and treatment. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 871-880.	1.9	102
13	Phosphorylation of elF2α at Serine 51 Is an Important Determinant of Cell Survival and Adaptation to Glucose Deficiency. Molecular Biology of the Cell, 2010, 21, 3220-3231.	2.1	100
14	Endoplasmic Reticulum Stress Accelerates p53 Degradation by the Cooperative Actions of Hdm2 and Glycogen Synthase Kinase 31². Molecular and Cellular Biology, 2005, 25, 9392-9405.	2.3	99
15	The eIF2α Kinases PERK and PKR Activate Glycogen Synthase Kinase 3 to Promote the Proteasomal Degradation of p53. Journal of Biological Chemistry, 2007, 282, 31675-31687.	3.4	99
16	Control of α Subunit of Eukaryotic Translation Initiation Factor 2 (eIF2α) Phosphorylation by the Human Papillomavirus Type 18 E6 Oncoprotein: Implications for eIF2α-Dependent Gene Expression and Cell Death. Molecular and Cellular Biology, 2004, 24, 3415-3429.	2.3	93
17	PERK and PKR: Old kinases learn new tricks. Cell Cycle, 2008, 7, 1146-1150.	2.6	85
18	Resistance to Vesicular Stomatitis Virus Infection Requires a Functional Cross Talk between the Eukaryotic Translation Initiation Factor 2α Kinases PERK and PKR. Journal of Virology, 2004, 78, 12747-12761.	3.4	82

#	Article	IF	CITATIONS
19	PKR and PKR-like Endoplasmic Reticulum Kinase Induce the Proteasome-dependent Degradation of Cyclin D1 via a Mechanism Requiring Eukaryotic Initiation Factor 2α Phosphorylation. Journal of Biological Chemistry, 2008, 283, 3097-3108.	3.4	82
20	Translational control of breast cancer plasticity. Nature Communications, 2020, 11, 2498.	12.8	80
21	A Novel Function of elF2α Kinases as Inducers of the Phosphoinositide-3 Kinase Signaling Pathway. Molecular Biology of the Cell, 2007, 18, 3635-3644.	2.1	79
22	mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature Communications, 2016, 7, 11127.	12.8	75
23	Tumor Suppression by PTEN Requires the Activation of the PKR-elF2α Phosphorylation Pathway. Science Signaling, 2009, 2, ra85.	3.6	72
24	Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2Â RNA-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 63-68.	7.1	70
25	The tumor suppressor function of STAT1 in breast cancer. Jak-stat, 2013, 2, e23353.	2.2	68
26	Functional Characterization of pkr Gene Products Expressed in Cells from Mice with a Targeted Deletion of the N terminus or C terminus Domain of PKR. Journal of Biological Chemistry, 2002, 277, 38364-38372.	3.4	66
27	Activation of the lκBα kinase (IKK) complex by double-stranded RNA-binding defective and catalytic inactive mutants of the interferon-inducible protein kinase PKR. Oncogene, 2001, 20, 1900-1912.	5.9	61
28	Modulation of the Eukaryotic Initiation Factor 2 α-Subunit Kinase PERK by Tyrosine Phosphorylation. Journal of Biological Chemistry, 2008, 283, 469-475.	3.4	60
29	Stat1 is a suppressor of ErbB2/Neu-mediated cellular transformation and mouse mammary gland tumor formation. Cell Cycle, 2011, 10, 794-804.	2.6	60
30	The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle, 2012, 11, 4069-4078.	2.6	58
31	The Shc1 adaptor simultaneously balances Stat1 and Stat3 activity to promote breast cancer immune suppression. Nature Communications, 2017, 8, 14638.	12.8	52
32	An integrated stress response via PKR suppresses HER2+ cancers and improves trastuzumab therapy. Nature Communications, 2019, 10, 2139.	12.8	46
33	Protein Tyrosine Phosphatase 1B Deficiency Potentiates PERK/elF2α Signaling in Brown Adipocytes. PLoS ONE, 2012, 7, e34412.	2.5	46
34	The eIF2α kinases inhibit vesicular stomatitis virus replication independently of eIF2 phosphorylation Cell Cycle, 2008, 7, 2346-2351.	2.6	44
35	elF2α Kinase PKR Modulates the Hypoxic Response by Stat3-Dependent Transcriptional Suppression of HIF-1α. Cancer Research, 2010, 70, 7820-7829.	0.9	44
36	Dominant Negative Function by an Alternatively Spliced Form of the Interferon-inducible Protein Kinase PKR. Journal of Biological Chemistry, 2001, 276, 13881-13890.	3.4	43

ANTONIS E KOROMILAS

#	Article	IF	CITATIONS
37	Interferons induce tyrosine phosphorylation of the eIF2α kinase PKR through activation of Jak1 and Tyk2. EMBO Reports, 2007, 8, 265-270.	4.5	38
38	Evidence for elF2α phosphorylation-independent effects of CSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle, 2014, 13, 801-806.	2.6	38
39	The Catalytic Activity of the Eukaryotic Initiation Factor-2α Kinase PKR Is Required to Negatively Regulate Stat1 and Stat3 via Activation of the T-cell Protein-tyrosine Phosphatase. Journal of Biological Chemistry, 2006, 281, 9439-9449.	3.4	35
40	mTORC2 Balances AKT Activation and elF2α Serine 51 Phosphorylation to Promote Survival under Stress. Molecular Cancer Research, 2015, 13, 1377-1388.	3.4	35
41	elF2α phosphorylation bypasses premature senescence caused by oxidative stress and pro-oxidant antitumor therapies. Aging, 2013, 5, 884-901.	3.1	35
42	Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification. American Journal of Physiology - Renal Physiology, 2018, 314, F1046-F1061.	2.7	32
43	Stat1 Phosphorylation Determines Ras Oncogenicity by Regulating p27Kip1. PLoS ONE, 2008, 3, e3476.	2.5	27
44	AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization. Molecular Pharmacology, 2016, 90, 460-468.	2.3	27
45	Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18. Journal of General Virology, 2004, 85, 1419-1426.	2.9	27
46	[Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget, 2016, 7, 23608-23632.	1.8	27
47	Control of oncogenesis by elF2α phosphorylation: implications in PTEN and Pl3K–Akt signaling and tumor treatment. Future Oncology, 2013, 9, 1005-1015.	2.4	26
48	The eIF2α serine 51 phosphorylation-ATF4 arm promotes HIPPO signaling and cell death under oxidative stress. Oncotarget, 2016, 7, 51044-51058.	1.8	26
49	Enhanced Antiviral and Antiproliferative Properties of a STAT1 Mutant Unable to Interact with the Protein Kinase PKR. Journal of Biological Chemistry, 2001, 276, 13727-13737.	3.4	25
50	Stat1 is an inhibitor of Ras-MAPK signaling and Rho small GTPase expression with implications in the transcriptional signature of Ras transformed cells. Cell Cycle, 2009, 8, 2070-2079.	2.6	24
51	Regulation of ULK1 Expression and Autophagy by STAT1. Journal of Biological Chemistry, 2017, 292, 1899-1909.	3.4	24
52	STAT1 Represses <i>Skp2</i> Gene Transcription to Promote p27Kip1 Stabilization in Ras-Transformed Cells. Molecular Cancer Research, 2010, 8, 798-805.	3.4	23
53	The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nature Communications, 2021, 12, 4651.	12.8	22
54	M(en)TORship lessons on life and death by the integrated stress response. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 644-649.	2.4	19

ANTONIS E KOROMILAS

#	Article	IF	CITATIONS
55	Upregulation of STAT1 protein in cells lacking or expressing mutants of the double-stranded RNA-dependent protein kinase PKR. FEBS Journal, 1999, 262, 149-154.	0.2	18
56	Control of Tumor Suppressor p53 Function by Endoplasmic Reticulum Stress. Cell Cycle, 2004, 3, 565-568.	2.6	18
57	STAT1 Promotes <i>KRAS</i> Colon Tumor Growth and Susceptibility to Pharmacological Inhibition of Translation Initiation Factor elF4A. Molecular Cancer Therapeutics, 2016, 15, 3055-3063.	4.1	17
58	A diminished activation capacity of the interferon-inducible protein kinase PKR in human T lymphocytes. FEBS Journal, 2000, 267, 1598-1606.	0.2	16
59	Increased phosphorylation of elF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget, 2016, 7, 79706-79721.	1.8	16
60	Alternative ferritin mRNA translation via internal initiation. Rna, 2012, 18, 547-556.	3.5	15
61	Protein Kinase R Mediates the Inflammatory Response Induced by Hyperosmotic Stress. Molecular and Cellular Biology, 2017, 37, .	2.3	14
62	HDAC pharmacological inhibition promotes cell death through the eIF2α kinases PKR and GCN2. Aging, 2010, 2, 669-677.	3.1	13
63	Induction of PG G/H Synthase-2 in Bovine Myometrial Cells by Interferon-Ï,, Requires the Activation of the p38 MAPK Pathway. Endocrinology, 2001, 142, 5107-5115.	2.8	12
64	Downregulation of PERK activity and eIF2α serine 51 phosphorylation by mTOR complex 1 elicits pro-oxidant and pro-death effects in tuberous sclerosis-deficient cells. Cell Death and Disease, 2018, 9, 254.	6.3	10
65	Uncovering the PKR pathway's potential for treatment of tumors. Future Oncology, 2010, 6, 643-645.	2.4	9
66	Stat1 stimulates cap-independent mRNA translation to inhibit cell proliferation and promote survival in response to antitumor drugs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2149-55.	7.1	8
67	Control of tumor suppressor p53 function by endoplasmic reticulum stress. Cell Cycle, 2004, 3, 567-70.	2.6	8
68	STAT1-mediated translational control in tumor suppression and antitumor therapies. Molecular and Cellular Oncology, 2016, 3, e1055049.	0.7	7
69	PKR is not a universal target of tumor suppressor p53 in response to genotoxic stress. Cell Cycle, 2009, 8, 3606-3607.	2.6	5
70	Negative regulation of mTORC2 by glycogen synthase kinase-3β: an adaptive process to stress with an anticancer therapeutic potential?. Future Oncology, 2011, 7, 845-848.	2.4	4
71	Development of transgenic mice expressing a conditionally active form of the eIF21 [±] kinase PKR. Genesis, 2011, 49, 743-749.	1.6	2
72	Detection of Lung Tumor Progression in Mice by Ultrasound Imaging. Journal of Visualized Experiments, 2020, , .	0.3	2

#	Article	IF	CITATIONS
73	The eIF2α kinase PKR is a negative regulator of Stat1 and Stat3. FASEB Journal, 2006, 20, A496.	0.5	2
74	The Aktâ€mTOR axis determines cell fate through the regulation of elF2alpha phosphorylation pathway FASEB Journal, 2013, 27, 835.9.	0.5	0
75	The integrated stress response in the induction of mutant <i>KRAS</i> lung carcinogenesis: Mechanistic insights and therapeutic implications. BioEssays, 2022, 44, e2200026.	2.5	0