Lars Samuelson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8125085/lars-samuelson-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

521 papers	28,885	87	150
	citations	h-index	g-index
556 ext. papers	30,946 ext. citations	5.6 avg, IF	6.74 L-index

#	Paper	IF	Citations
521	Influence of Contacts and Applied Voltage on a Structure of a Single GaN Nanowire. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 9419	2.6	
520	Aerotaxy: gas-phase epitaxy of quasi 1D nanostructures. <i>Nanotechnology</i> , 2021 , 32, 025605	3.4	5
519	From InGaN pyramids to micro-LEDs characterized by cathodoluminescence. <i>Nano Express</i> , 2021 , 2, 014	0ք6	O
518	Semiconductor nanowire array for transparent photovoltaic applications. <i>Applied Physics Letters</i> , 2021 , 118, 191107	3.4	3
517	From nanoLEDs to the realization of RGB-emitting microLEDs. <i>Semiconductors and Semimetals</i> , 2021 , 106, 223-251	0.6	3
516	Dislocation-Free and Atomically Flat GaN Hexagonal Microprisms for Device Applications. <i>Small</i> , 2020 , 16, e1907364	11	7
515	Hot-carrier separation in heterostructure nanowires observed by electron-beam induced current. <i>Nanotechnology</i> , 2020 , 31, 394004	3.4	4
514	Realization of Ultrahigh Quality InGaN Platelets to be Used as Relaxed Templates for Red Micro-LEDs. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 17845-17851	9.5	16
513	Embedded sacrificial AlAs segments in GaAs nanowires for substrate reuse. <i>Nanotechnology</i> , 2020 , 31, 204002	3.4	5
512	Nanowire Solar Cells: A New Radiation Hard PV Technology for Space Applications. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 502-507	3.7	10
511	Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices. <i>Nano Letters</i> , 2020 , 20, 4064-40) 72 1.5	10
510	Evidence of half-integer Shapiro steps originated from nonsinusoidal current phase relation in a short ballistic InAs nanowire Josephson junction. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
509	Optical microprism cavities based on dislocation-free GaN. <i>Applied Physics Letters</i> , 2020 , 117, 231107	3.4	
508	Template-assisted vapour-liquid-solid growth of InP nanowires on (001) InP and Si substrates. <i>Nanoscale</i> , 2020 , 12, 888-894	7.7	5
507	Optimization of GaN Nanowires Reformation Process by Metalorganic Chemical Vapor Deposition for Device-Quality GaN Templates. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900581	1.3	2
506	Dominant nonlocal superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire. <i>Science Advances</i> , 2019 , 5, eaaw2194	14.3	12
505	InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. <i>Nano Letters</i> , 2019 , 19, 2832-2839	11.5	24

504	Synthesis and Applications of III-V Nanowires. <i>Chemical Reviews</i> , 2019 , 119, 9170-9220	68.1	109
503	Revealing misfit dislocations in InAs P -InP core-shell nanowires by x-ray diffraction. <i>Nanotechnology</i> , 2019 , 30, 505703	3.4	7
502	Radiation Tolerant Nanowire Array Solar Cells. ACS Nano, 2019, 13, 12860-12869	16.7	17
501	Surface and dislocation investigation of planar GaN formed by crystal reformation of nanowire arrays. <i>Physical Review Materials</i> , 2019 , 3,	3.2	4
500	High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating. <i>Nano Letters</i> , 2019 , 19, 8424-8430	11.5	9
499	In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering. <i>Nano Research</i> , 2019 , 12, 25-31	10	6
498	Nanowire photodetectors with embedded quantum heterostructures for infrared detection. <i>Infrared Physics and Technology</i> , 2019 , 96, 209-212	2.7	5
497	Surface smoothing and native oxide suppression on Zn doped aerotaxy GaAs nanowires. <i>Journal of Applied Physics</i> , 2019 , 125, 025303	2.5	6
496	Towards Nanowire Tandem Junction Solar Cells on Silicon. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 733-7	49 .7	37
495	n-type doping and morphology of GaAs nanowires in Aerotaxy. <i>Nanotechnology</i> , 2018 , 29, 285601	3.4	13
494	High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds. <i>Journal of Applied Physics</i> , 2018 , 123, 025102	2.5	19
493	Temperature dependent electronic band structure of wurtzite GaAs nanowires. <i>Nanoscale</i> , 2018 , 10, 1481-1486	7.7	11
492	Self-Seeded Axio-Radial InAs-InAsP Nanowire Heterostructures beyond "Common" VLS Growth. <i>Nano Letters</i> , 2018 , 18, 144-151	11.5	11
491	Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. <i>Nano Letters</i> , 2018 , 18, 365-372	11.5	27
490	Self-assembled InN quantum dots on side facets of GaN nanowires. <i>Journal of Applied Physics</i> , 2018 , 123, 164302	2.5	9
489	Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements. <i>Nano Letters</i> , 2018 , 18, 3038-3046	11.5	52
488	Structural Changes in a Single GaN Nanowire under Applied Voltage Bias. <i>Nano Letters</i> , 2018 , 18, 5446-	54525	9
487	Electron Tomography Reveals the Droplet Covered Surface Structure of Nanowires Grown by Aerotaxy. <i>Small</i> , 2018 , 14, e1801285	11	3

486	Lattice Tilt Mapping using Full Field Diffraction X-Ray Microscopy at ID01 ESRF. <i>Microscopy and Microanalysis</i> , 2018 , 24, 128-129	0.5	1
485	Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors. <i>Nano Letters</i> , 2018 , 18, 4431-4439	11.5	9
484	Bias-dependent spectral tuning in InP nanowire-based photodetectors. <i>Nanotechnology</i> , 2017 , 28, 1140	0564	9
483	X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire. ACS Nano, 2017, 11, 6605-6611	16.7	34
482	Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. <i>Nano Letters</i> , 2017 , 17, 3356-3362	11.5	28
481	Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. <i>Nano Letters</i> , 2017 , 17, 3599-3606	11.5	13
480	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 1135	031.4	6
479	Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes. <i>Nanotechnology</i> , 2017 , 28, 485205	3.4	5
478	InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors. <i>ACS Photonics</i> , 2017 , 4, 2693-2698	6.3	18
477	Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design. <i>Nano Letters</i> , 2017 , 17, 1121-1126	11.5	5
476	Gate tunable parallel double quantum dots in InAs double-nanowire devices. <i>Applied Physics Letters</i> , 2017 , 111, 233513	3.4	5
475	A GaAs Nanowire Array Solar Cell With 15.3% Efficiency at 1 Sun. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 185-190	3.7	229
474	GaAsP Nanowires Grown by Aerotaxy. <i>Nano Letters</i> , 2016 , 16, 5701-7	11.5	29
473	Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires. <i>Nanotechnology</i> , 2016 , 27, 4557	0,44	10
472	InP nanowire p-type doping via Zinc indiffusion. <i>Journal of Crystal Growth</i> , 2016 , 451, 18-26	1.6	3
471	Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs1-xPx Nanowires. <i>Nano Letters</i> , 2016 , 16, 1017-21	11.5	7
470	Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation. <i>Nano Letters</i> , 2016 , 16, 2774-80	11.5	19
469	Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System. <i>Nano Letters</i> , 2016 , 16, 656-62	11.5	31

(2015-2016)

468	Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire. <i>Nano Letters</i> , 2016 , 16, 205-11	11.5	31
467	Nanowire-Based Visible Light Emitters, Present Status and Outlook. <i>Semiconductors and Semimetals</i> , 2016 , 94, 227-271	0.6	27
466	. IEEE Journal of Photovoltaics, 2016 , 6, 1502-1508	3.7	17
465	Study of carrier concentration in single InP nanowires by luminescence and Hall measurements. <i>Nanotechnology</i> , 2015 , 26, 045705	3.4	34
464	Structural Properties of wurtzite InP-InGaAs nanowire core-shell heterostructures. <i>Nano Letters</i> , 2015 , 15, 2462-7	11.5	27
463	Fast Strain Mapping of Nanowire Light-Emitting Diodes Using Nanofocused X-ray Beams. <i>ACS Nano</i> , 2015 , 9, 6978-84	16.7	23
462	Measurement of strain in InGaN/GaN nanowires and nanopyramids. <i>Journal of Applied Crystallography</i> , 2015 , 48, 344-349	3.8	18
461	In situ characterization of nanowire dimensions and growth dynamics by optical reflectance. <i>Nano Letters</i> , 2015 , 15, 3597-602	11.5	44
460	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6	11.5	55
459	InAs Nanowire Transistors with Multiple, Independent Wrap-Gate Segments. <i>Nano Letters</i> , 2015 , 15, 2836-43	11.5	27
458	III-V nanowire synthesis by use of electrodeposited gold particles. <i>Nano Letters</i> , 2015 , 15, 134-8	11.5	21
457	Transport studies of electron-hole and spin-orbit interaction in GaSb/InAsSb core-shell nanowire quantum dots. <i>Physical Review B</i> , 2015 , 91,	3.3	21
456	Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam. <i>Applied Physics Letters</i> , 2015 , 107, 103101	3.4	20
455	Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence. <i>Applied Physics Letters</i> , 2015 , 107, 251106	3.4	34
454	A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun 2015 ,		4
453	Nanofocused x-ray beams applied for mapping strain in core-shell nanowires 2015,		7
452	Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography. <i>Small</i> , 2015 , 11, 2687-95	11	20
451	Zn-doping of GaAs nanowires grown by Aerotaxy. <i>Journal of Crystal Growth</i> , 2015 , 414, 181-186	1.6	23

450	A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices. <i>Nano Letters</i> , 2015 , 15, 1809-14	11.5	49
449	Synthesis of doped InP core-shell nanowires evaluated using hall effect measurements. <i>Nano Letters</i> , 2014 , 14, 749-53	11.5	28
448	Absorption of light in InP nanowire arrays. <i>Nano Research</i> , 2014 , 7, 816-823	10	68
447	Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning. <i>Nature Communications</i> , 2014 , 5, 3221	17.4	44
446	Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors. <i>Nano Letters</i> , 2014 , 14, 94-100	11.5	22
445	Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays. <i>Nano Letters</i> , 2014 , 14, 565	0-5 .5	22
444	Electrical properties of GaSb/InAsSb core/shell nanowires. <i>Nanotechnology</i> , 2014 , 25, 425201	3.4	29
443	Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. <i>Nano Research</i> , 2014 , 7, 1188-1194	10	16
442	Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching. <i>Journal of Crystal Growth</i> , 2014 , 386, 47-51	1.6	30
441	GaAs/AlGaAs heterostructure nanowires studied by cathodoluminescence. <i>Nano Research</i> , 2014 , 7, 473	-490	30
440	Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. <i>Nano Research</i> , 2014 , 7, 544-552	10	35
439	InN quantum dots on GaN nanowires grown by MOVPE. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2014 , 11, 421-424		4
438	Microarray analysis reveals moderate gene expression changes in cortical neural stem cells cultured on nanowire arrays. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 4880-5	1.3	13
437	Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 153112	3.4	8
436	Tunable absorption resonances in the ultraviolet for InP nanowire arrays. <i>Optics Express</i> , 2014 , 22, 2920	45.32	19
435	Bulk-like transverse electron mobility in an array of heavily n-doped InP nanowires probed by terahertz spectroscopy. <i>Physical Review B</i> , 2014 , 90,	3.3	21
434	Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. <i>Physical Review B</i> , 2014 , 89,	3.3	55
433	Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 394003	3	22

432	Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments. <i>Nanotechnology</i> , 2014 , 25, 465306	3.4	8
431	Semiconductor nanostructures enabled by aerosol technology. <i>Frontiers of Physics</i> , 2014 , 9, 398-418	3.7	18
430	Large-energy-shift photon upconversion in degenerately doped InP nanowires by direct excitation into the electron gas. <i>Nano Research</i> , 2013 , 6, 752-757	10	5
429	Fluorescent nanowire heterostructures as a versatile tool for biology applications. <i>Nano Letters</i> , 2013 , 13, 4728-32	11.5	38
428	Photoluminescence study of Zn-doped wurtzite InP core-shell nanowiresa). <i>Applied Physics Letters</i> , 2013 , 102, 032105	3.4	1
427	Magnetic polarons and large negative magnetoresistance in GaAs nanowires implanted with Mn ions. <i>Nano Letters</i> , 2013 , 13, 5079-84	11.5	24
426	Semiconductor-oxide heterostructured nanowires using postgrowth oxidation. <i>Nano Letters</i> , 2013 , 13, 5961-6	11.5	7
425	Conductance enhancement of InAs/InP heterostructure nanowires by surface functionalization with oligo(phenylene vinylene)s. <i>ACS Nano</i> , 2013 , 7, 4111-8	16.7	14
424	III-V and III-nitride nanowires for LED applications 2013,		1
423	InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. <i>Science</i> , 2013 , 339, 1057-60	33.3	962
422	Nanowire-based electrode for acute in vivo neural recordings in the brain. <i>PLoS ONE</i> , 2013 , 8, e56673	3.7	64
421	Optical far-field method with subwavelength accuracy for the determination of nanostructure dimensions in large-area samples. <i>Nano Letters</i> , 2013 , 13, 2662-7	11.5	13
420	Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles. <i>Nanotechnology</i> , 2013 , 24, 115706	3.4	12
419	Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. <i>Small</i> , 2013 , 9, 4006-16, 3905	11	83
418	Current-voltage characterization of individual as-grown nanowires using a scanning tunneling microscope. <i>Nano Letters</i> , 2013 , 13, 5182-9	11.5	16
417	MOVPE-grown InAs/AlAs0.16Sb0.84/InAs and InAs/AlAs0.16Sb0.84/GaSb heterostructures. <i>Journal of Crystal Growth</i> , 2013 , 374, 43-48	1.6	2
416	Control and understanding of kink formation in InAs-InP heterostructure nanowires. Nanotechnology, 2013 , 24, 345601	3.4	13
415	Reflection measurements to reveal the absorption in nanowire arrays. <i>Optics Letters</i> , 2013 , 38, 1449-51	3	11

414	Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence 2013 ,		1
413	Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires. <i>Nanotechnology</i> , 2013 , 24, 225203	3.4	11
412	Spatially resolved Hall effect measurement in a single semiconductor nanowire. <i>Nature Nanotechnology</i> , 2012 , 7, 718-22	28.7	140
411	Continuous gas-phase synthesis of nanowires with tunable properties. <i>Nature</i> , 2012 , 492, 90-4	50.4	134
410	Electron trapping in InP nanowire FETs with stacking faults. <i>Nano Letters</i> , 2012 , 12, 151-5	11.5	90
409	Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography. <i>Nano Letters</i> , 2012 , 12, 1-6	11.5	72
408	Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. <i>Nano Letters</i> , 2012 , 12, 1990-5	11.5	87
407	Hopping conduction in Mn ion-implanted GaAs nanowires. <i>Nano Letters</i> , 2012 , 12, 4838-42	11.5	38
406	Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano, 2012, 6, 3109-7	1 3 6.7	76
405	Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires. <i>ACS Nano</i> , 2012 , 6, 9679-89	16.7	35
404	Electrical and optical properties of InP nanowire ensemble p+-i-n+ photodetectors. <i>Nanotechnology</i> , 2012 , 23, 135201	3.4	30
403	Particle-assisted Ga(x)In(1-x)P nanowire growth for designed bandgap structures. <i>Nanotechnology</i> , 2012 , 23, 245601	3.4	41
402	Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-5	3.5	9
401	Vertical oxide nanotubes connected by subsurface microchannels. <i>Nano Research</i> , 2012 , 5, 190-198	10	33
400	Lineshape of the thermopower of quantum dots. New Journal of Physics, 2012, 14, 033041	2.9	59
399	Phonon Transport and Thermoelectricity in Defect-Engineered InAs Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1404, 36		5
398	Single GaInP nanowire p-i-n junctions near the direct to indirect bandgap crossover point. <i>Applied Physics Letters</i> , 2012 , 100, 251103	3.4	12
397	Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires. <i>Nanotechnology</i> , 2011 , 22, 185201	3.4	17

(2011-2011)

396	A new route toward semiconductor nanospintronics: highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions. <i>Nano Letters</i> , 2011 , 11, 3935-40	11.5	43
395	Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. <i>Physical Review B</i> , 2011 , 83,	3.3	89
394	Axial InP nanowire tandem junction grown on a silicon substrate. <i>Nano Letters</i> , 2011 , 11, 2028-31	11.5	104
393	Growth of doped InAsyP1 nanowires with InP shells. <i>Journal of Crystal Growth</i> , 2011 , 331, 8-14	1.6	27
392	Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study. <i>Journal of Crystal Growth</i> , 2011 , 334, 51-56	1.6	36
391	GaAs-based Nanowires Studied by Low-Temperature Cathodoluminescence. <i>Journal of Physics:</i> Conference Series, 2011 , 326, 012042	0.3	2
390	Nanowires With Promise for Photovoltaics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 1050-1061	3.8	108
389	InSb Nanowire Field-Effect Transistors and Quantum-Dot Devices. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 907-914	3.8	30
388	Dynamics of extremely anisotropic etching of InP nanowires by HCl. <i>Chemical Physics Letters</i> , 2011 , 502, 222-224	2.5	11
387	Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy. <i>Nano Research</i> , 2011 , 4, 159-163	10	38
386	Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1532-1534	1.6	6
385	Gate-induced fermi level tuning in InP nanowires at efficiency close to the thermal limit. <i>Nano Letters</i> , 2011 , 11, 1127-30	11.5	16
384	Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires. <i>Nano Letters</i> , 2011 , 11, 2286-90	11.5	62
383	Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence. <i>Journal of Crystal Growth</i> , 2011 , 315, 138-142	1.6	23
382	Fabrication and characterization of AlP-GaP core-shell nanowires. <i>Journal of Crystal Growth</i> , 2011 , 324, 290-295	1.6	6
381	Doping profile of InP nanowires directly imaged by photoemission electron microscopy. <i>Applied Physics Letters</i> , 2011 , 99, 233113	3.4	15
380	Thermal resistance of a nanoscale point contact to an indium arsenide nanowire. <i>Applied Physics Letters</i> , 2011 , 99, 063110	3.4	15
379	Signatures of Wigner localization in epitaxially grown nanowires. <i>Physical Review B</i> , 2011 , 83,	3.3	26

378	InAs quantum dots and quantum wells grown on stacking-fault controlled InP nanowires with wurtzite crystal structure. <i>Applied Physics Letters</i> , 2011 , 99, 131915	3.4	29
377	Degenerate p-doping of InP nanowires for large area tunnel diodes. <i>Applied Physics Letters</i> , 2011 , 99, 253105	3.4	27
376	GaSb nanowire single-hole transistor. Applied Physics Letters, 2011, 99, 262104	3.4	31
375	Photoluminescence of Mg-doped m -plane GaN grown by MOCVD on bulk GaN substrates 2011 ,		2
374	Toward 3D Integration of 1D Conductors: Junctions of InAs Nanowires. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-5	3.2	1
373	Time-resolved photoluminescence investigations on HfO2-capped InP nanowires. <i>Nanotechnology</i> , 2010 , 21, 105711	3.4	13
372	Correlation-induced conductance suppression at level degeneracy in a quantum dot. <i>Physical Review Letters</i> , 2010 , 104, 186804	7.4	47
371	Control of IIIIV nanowire crystal structure by growth parameter tuning. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024009	1.8	200
370	Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 21-26	1.3	12
369	Comparative friction measurements of InAs nanowires on three substrates. <i>Journal of Applied Physics</i> , 2010 , 108, 094307	2.5	10
368	Determination of diffusion lengths in nanowires using cathodoluminescence. <i>Applied Physics Letters</i> , 2010 , 97, 072114	3.4	31
367	Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	12
366	Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications. <i>Nanotechnology</i> , 2010 , 21, 055102	3.4	9
365	Charge pumping in InAs nanowires by surface acoustic waves. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024013	1.8	8
364	Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. <i>Nano Letters</i> , 2010 , 10, 4807-12	11.5	77
363	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9	11.5	205
362	Diameter Dependence of the Wurtzite Zinc Blende Transition in InAs Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3837-3842	3.8	121
361	New flexible toolbox for nanomechanical measurements with extreme precision and at very high frequencies. <i>Nano Letters</i> , 2010 , 10, 3893-8	11.5	8

360	Probing strain in bent semiconductor nanowires with Raman spectroscopy. <i>Nano Letters</i> , 2010 , 10, 1280	0 -6 1.5	79
359	Fifteen-piconewton force detection from neural growth cones using nanowire arrays. <i>Nano Letters</i> , 2010 , 10, 782-7	11.5	98
358	High-performance single nanowire tunnel diodes. <i>Nano Letters</i> , 2010 , 10, 974-9	11.5	73
357	Growth mechanism of self-catalyzed group III-V nanowires. <i>Nano Letters</i> , 2010 , 10, 4443-9	11.5	160
356	Probing confined phonon modes by transport through a nanowire double quantum dot. <i>Physical Review Letters</i> , 2010 , 104, 036801	7.4	48
355	The electrical and structural properties of n-type InAs nanowires grown from metal-organic precursors. <i>Nanotechnology</i> , 2010 , 21, 205703	3.4	83
354	Low-temperature cathodoluminescence studies of GaAs nanowires in the SEM. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 012085	0.3	1
353	In situ etching for total control over axial and radial nanowire growth. Nano Research, 2010 , 3, 264-270	10	119
352	III-V Nanowires E xtending a Narrowing Road. <i>Proceedings of the IEEE</i> , 2010 , 98, 2047-2060	14.3	79
351	Growth and segregation of GaAsAlxIn1⊠P core-shell nanowires. <i>Journal of Crystal Growth</i> , 2010 , 312, 1755-1760	1.6	37
350	Nanofluidics in hollow nanowires. <i>Nanotechnology</i> , 2010 , 21, 155301	3.4	18
349	Microphotoluminescence studies of tunable wurtzite InAs0.85P0.15 quantum dots embedded in wurtzite InP nanowires. <i>Physical Review B</i> , 2009 , 80,	3.3	16
348	X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 131911	3.4	11
347	The fabrication of dense and uniform InAs nanowire arrays. <i>Nanotechnology</i> , 2009 , 20, 225304	3.4	33
346	Gallium phosphide nanowire arrays and their possible application in cellular force investigations. Journal of Vacuum Science & Technology B, 2009 , 27, 3092		32
345	Determination of the wurtzite content and orientation distribution of nanowire ensembles. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1206, 113901		
344	Growth of vertical InAs nanowires on heterostructured substrates. <i>Nanotechnology</i> , 2009 , 20, 285303	3.4	16
343	Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. <i>Nanotechnology</i> , 2009 , 20, 07560	033.4	64

342	Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. <i>Advanced Materials</i> , 2009 , 21, 153-165	24	272
341	Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate. <i>Advanced Materials</i> , 2009 , 21, 3654-3658	24	34
340	Controlled polytypic and twin-plane superlattices in iii-v nanowires. <i>Nature Nanotechnology</i> , 2009 , 4, 50-5	28.7	577
339	Structural investigations of core-shell nanowires using grazing incidence X-ray diffraction. <i>Nano Letters</i> , 2009 , 9, 1877-82	11.5	45
338	Rectifying and sorting of regenerating axons by free-standing nanowire patterns: a highway for nerve fibers. <i>Langmuir</i> , 2009 , 25, 4343-6	4	41
337	Measuring temperature gradients over nanometer length scales. <i>Nano Letters</i> , 2009 , 9, 779-83	11.5	43
336	Thermal conductance of InAs nanowire composites. <i>Nano Letters</i> , 2009 , 9, 4484-8	11.5	64
335	Nanowire biocompatibility in the brainlooking for a needle in a 3D stack. <i>Nano Letters</i> , 2009 , 9, 4184-9	0 11.5	40
334	Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. <i>Physical Review B</i> , 2009 , 80,	3.3	399
333	Effects of Supersaturation on the Crystal Structure of Gold Seeded IIIIV Nanowires. <i>Crystal Growth and Design</i> , 2009 , 9, 766-773	3.5	138
332	Giant, level-dependent g factors in InSb nanowire quantum dots. <i>Nano Letters</i> , 2009 , 9, 3151-6	11.5	201
331	Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. <i>Small</i> , 2009 , 5, 203-7	11	42
330	Development of a Vertical Wrap-Gated InAs FET. IEEE Transactions on Electron Devices, 2008, 55, 3030-3	10236	83
329	. IEEE Transactions on Electron Devices, 2008 , 55, 3037-3041	2.9	42
328	Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles. <i>Nanotechnology</i> , 2008 , 19, 275712	3.4	50
327	A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire. <i>Nano Letters</i> , 2008 , 8, 872-5	11.5	42
326	Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate. <i>IEEE Electron Device Letters</i> , 2008 , 29, 206-208	4.4	154
325	Electrical properties of self-assembled branched InAs nanowire junctions. <i>Nano Letters</i> , 2008 , 8, 1100-4	11.5	50

324	Precursor evaluation for in situ InP nanowire doping. <i>Nanotechnology</i> , 2008 , 19, 445602	3.4	88
323	Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. <i>Nanotechnology</i> , 2008 , 19, 305201	3.4	196
322	Spin states of holes in Ge/Si nanowire quantum dots. <i>Physical Review Letters</i> , 2008 , 101, 186802	7.4	63
321	Transients in the formation of nanowire heterostructures. <i>Nano Letters</i> , 2008 , 8, 3815-8	11.5	57
320	InAs nanowire metal-oxide-semiconductor capacitors. <i>Applied Physics Letters</i> , 2008 , 92, 253509	3.4	81
319	Heterostructure Barriers in Wrap Gated Nanowire FETs. IEEE Electron Device Letters, 2008, 29, 981-983	4.4	23
318	Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions. <i>Nano Letters</i> , 2008 , 8, 848-52	11.5	15
317	Optical properties of rotationally twinned InP nanowire heterostructures. <i>Nano Letters</i> , 2008 , 8, 836-41	11.5	283
316	Control of GaP and GaAs nanowire morphology through particle and substrate chemical modification. <i>Nano Letters</i> , 2008 , 8, 4087-91	11.5	35
315	Direct atomic scale imaging of III-V nanowire surfaces. <i>Nano Letters</i> , 2008 , 8, 3978-82	11.5	54
314	AFM-based manipulation of InAs nanowires. <i>Journal of Physics: Conference Series</i> , 2008 , 100, 052051	0.3	4
313	Drive current and threshold voltage control in vertical InAs wrap-gate transistors. <i>Electronics Letters</i> , 2008 , 44, 236	1.1	13
312	Analysing the capacitance-voltage measurements of vertical wrapped-gated nanowires. <i>Nanotechnology</i> , 2008 , 19, 435201	3.4	25
311	Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts. <i>Applied Physics Letters</i> , 2008 , 93, 012105	3.4	22
310	Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. <i>Applied Physics Letters</i> , 2008 , 92, 093110	3.4	28
309	Magnetoresistance studies on CoAlOXAu and CoAlOXNiAu tunnel structures. <i>Applied Physics Letters</i> , 2008 , 93, 203107	3.4	3
308	Confinement properties of a Ga0.25In0.75AsIhP quantum point contact. <i>Physical Review B</i> , 2008 , 77,	3.3	13
307	Axonal guidance on patterned free-standing nanowire surfaces. <i>Nanotechnology</i> , 2008 , 19, 345101	3.4	75

306	Imaging a one-electron InAs quantum dot in an InAs/InP nanowire. Physical Review B, 2008, 77,	3.3	31
305	High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. <i>Small</i> , 2008 , 4, 878-82	11	153
304	Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. <i>Small</i> , 2008 , 4, 1741-6	11	26
303	GaAs/GaSb nanowire heterostructures grown by MOVPE. <i>Journal of Crystal Growth</i> , 2008 , 310, 4115-41.	21 .6	81
302	Effects of growth conditions on the crystal structure of gold-seeded GaP nanowires. <i>Journal of Crystal Growth</i> , 2008 , 310, 5102-5105	1.6	13
301	Determining a temperature differential across a quantum dot. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 1605-1607	3	2
300	Selective etching of IIII nanowires for molecular junctions. <i>Microelectronic Engineering</i> , 2008 , 85, 1179-	1181	4
299	Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. <i>Nanotechnology</i> , 2007 , 18, 015504	3.4	160
298	Size-selected compound semiconductor quantum dots by nanoparticle conversion. <i>Nanotechnology</i> , 2007 , 18, 105306	3.4	2
297	Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. <i>Physical Review Letters</i> , 2007 , 98, 266801	7.4	222
296	Sulfur passivation for ohmic contact formation to InAs nanowires. <i>Nanotechnology</i> , 2007 , 18, 105307	3.4	141
295	The morphology of axial and branched nanowire heterostructures. <i>Nano Letters</i> , 2007 , 7, 1817-22	11.5	161
294	Strain and shape of epitaxial InAs/InP nanowire superlattice measured by grazing incidence X-ray techniques. <i>Nano Letters</i> , 2007 , 7, 2596-601	11.5	56
293	Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self-Assembled Organic Coatings. <i>Advanced Materials</i> , 2007 , 19, 1801-1806	24	84
292	InAs nanowires grown by MOVPE. Journal of Crystal Growth, 2007, 298, 631-634	1.6	32
291	The structure of <1 1 1>B oriented GaP nanowires. <i>Journal of Crystal Growth</i> , 2007 , 298, 635-639	1.6	28
290	Shear stress measurements on InAs nanowires by AFM manipulation. <i>Small</i> , 2007 , 3, 1398-401	11	48
289	High-speed nanometer-scale imaging for studies of nanowire mechanics. <i>Small</i> , 2007 , 3, 1699-702	11	9

288	Correlation lengths in stacked InAs quantum dot systems studied by cross-sectional scanning tunnelling microscopy. <i>Nanotechnology</i> , 2007 , 18, 145403	3.4	6
287	Core-shell InP-CdS nanowires: fabrication and study. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 295	211.8	7
286	Assembling ferromagnetic single-electron transistors by atomic force microscopy. <i>Nanotechnology</i> , 2007 , 18, 055302	3.4	7
285	Quantum-dot thermometry. <i>Applied Physics Letters</i> , 2007 , 91, 252114	3.4	15
284	Measurements of the band gap of wurtzite InAs1\(\text{NP} \) nanowires using photocurrent spectroscopy. Journal of Applied Physics, 2007 , 101, 123701	2.5	69
283	Single electron pumping in InAs nanowire double quantum dots. <i>Applied Physics Letters</i> , 2007 , 91, 05210	0 9 .4	48
282	Surface diffusion effects on growth of nanowires by chemical beam epitaxy. <i>Journal of Applied Physics</i> , 2007 , 101, 034313	2.5	81
281	Large magnetoresistance in CoNito ferromagnetic single electron transistors. <i>Applied Physics Letters</i> , 2007 , 90, 123111	3.4	6
280	Detection of charge states in nanowire quantum dots using a quantum point contact. <i>Applied Physics Letters</i> , 2007 , 90, 172112	3.4	21
279	Directed Growth of Branched Nanowire Structures. MRS Bulletin, 2007, 32, 127-133	3.2	38
278	Nanowire Field-Effect Transistor. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 2629-2631	1.4	17
277	Understanding the 3D structure of mathrm {GaAslangle 111rangle B} nanowires. <i>Nanotechnology</i> , 2007 , 18, 485717	3.4	39
276	Few electron double quantum dots in InAs/InP nanowire heterostructures. <i>Nano Letters</i> , 2007 , 7, 243-6	11.5	96
275	GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. <i>Nano Letters</i> , 2007 , 7, 2859-64	11.5	50
274	Locating nanowire heterostructures by electron beam induced current. <i>Nanotechnology</i> , 2007 , 18, 2053	10964	19
273	Exciton fine structure splitting in InP quantum dots in GaInP. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 295211	1.8	1
272	Probing spin accumulation in Ni/Au/Ni single-electron transistors with efficient spin injection and detection electrodes. <i>Nano Letters</i> , 2007 , 7, 81-5	11.5	11
271	Gallium phosphide nanowires as a substrate for cultured neurons. <i>Nano Letters</i> , 2007 , 7, 2960-5	11.5	165

270	Quantum-confinement effects in InAs-InP core-shell nanowires. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 295219	1.8	30
269	Height-controlled nanowire branches on nanotrees using a polymer mask. <i>Nanotechnology</i> , 2007 , 18, 035601	3.4	13
268	Improving InAs nanotree growth with composition-controlled AuIh nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 1344-1350	3.4	32
267	CRYSTAL STRUCTURE OF BRANCHED EPITAXIAL IIII NANOTREES. <i>Nano</i> , 2006 , 01, 139-151	1.1	9
266	Unified model of fractal conductance fluctuations for diffusive and ballistic semiconductor devices. <i>Physical Review B</i> , 2006 , 73,	3.3	23
265	Investigations of InAs surface dots on InP. <i>Applied Physics Letters</i> , 2006 , 89, 033111	3.4	5
264	Au-free epitaxial growth of InAs nanowires. <i>Nano Letters</i> , 2006 , 6, 1817-21	11.5	194
263	. IEEE Electron Device Letters, 2006 , 27, 323-325	4.4	290
262	Infrared photodetectors in heterostructure nanowires. <i>Nano Letters</i> , 2006 , 6, 229-32	11.5	187
261	Vertical wrap-gated nanowire transistors. <i>Nanotechnology</i> , 2006 , 17, S227-S230	3.4	149
260	Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. <i>Nano Letters</i> , 2006 , 6, 1842-6	11.5	125
259	Optical interference from pairs and arrays of nanowires. <i>Nano Letters</i> , 2006 , 6, 862-5	11.5	6
258	Nanowire-based multiple quantum dot memory. <i>Applied Physics Letters</i> , 2006 , 89, 163101	3.4	38
257	Position-controlled interconnected InAs nanowire networks. <i>Nano Letters</i> , 2006 , 6, 2842-7	11.5	77
256	Phase segregation in AlInP shells on GaAs nanowires. <i>Nano Letters</i> , 2006 , 6, 2743-7	11.5	92
255	InAs1-xPx nanowires for device engineering. <i>Nano Letters</i> , 2006 , 6, 403-7	11.5	75
254	Structural properties of B -oriented III-V nanowires. <i>Nature Materials</i> , 2006 , 5, 574-80	27	381
253	Series summation of fractal fluctuations in electron billiard arrays. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 34, 600-603	3	

252	Growth and characterization of defect free GaAs nanowires. Journal of Crystal Growth, 2006, 287, 504-	50 ₈ 6	80
251	Optimization of Au-assisted InAs nanowires grown by MOVPE. <i>Journal of Crystal Growth</i> , 2006 , 297, 32	6-B 8 3	64
250	Fabrication, optical characterization and modeling of strained core@hell nanowires. <i>Thin Solid Films</i> , 2006 , 515, 793-796	2.2	19
249	Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. <i>Nano Letters</i> , 2005 , 5, 761-4	11.5	268
248	Microwave detection at 110 Ghz by nanowires with broken symmetry. <i>Nano Letters</i> , 2005 , 5, 1423-7	11.5	76
247	Mass transport model for semiconductor nanowire growth. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13567-71	3.4	186
246	Tunable effective g factor in InAs nanowire quantum dots. <i>Physical Review B</i> , 2005 , 72,	3.3	124
245	Tunable double quantum dots in InAs nanowires defined by local gate electrodes. <i>Nano Letters</i> , 2005 , 5, 1487-90	11.5	135
244	Spin relaxation in InAs nanowires studied by tunable weak antilocalization. <i>Physical Review B</i> , 2005 , 71,	3.3	117
243	Nanowire single-electron memory. <i>Nano Letters</i> , 2005 , 5, 635-8	11.5	119
243	Nanowire single-electron memory. <i>Nano Letters</i> , 2005 , 5, 635-8 Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005 , 463-466	11.5	119
		11.5	
242	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005 , 463-466 Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP.		2
242	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005 , 463-466 Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP. <i>Microelectronics Journal</i> , 2005 , 36, 227-230 Growth and optical properties of strained GaAs-GaxIn 1-x P core-shell nanowires. <i>Nano Letters</i> ,	1.8	2
242 241 240	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005, 463-466 Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP. Microelectronics Journal, 2005, 36, 227-230 Growth and optical properties of strained GaAs-GaxIn 1-x P core-shell nanowires. Nano Letters, 2005, 5, 1943-7 A New Understanding of Au-Assisted Growth of III® Semiconductor Nanowires. Advanced	1.8	2 1 218
242 241 240 239	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005, 463-466 Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP. Microelectronics Journal, 2005, 36, 227-230 Growth and optical properties of strained GaAs-GaxIn 1-x P core-shell nanowires. Nano Letters, 2005, 5, 1943-7 A New Understanding of Au-Assisted Growth of IIIN Semiconductor Nanowires. Advanced Functional Materials, 2005, 15, 1603-1610 Epitaxially grown GaP/GaAs1NPx/GaP double heterostructure nanowires for optical applications.	1.8 11.5 15.6	2 1 218 131
242 241 240 239 238	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005, 463-466 Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP. Microelectronics Journal, 2005, 36, 227-230 Growth and optical properties of strained GaAs-GaxIn 1-x P core-shell nanowires. Nano Letters, 2005, 5, 1943-7 A New Understanding of Au-Assisted Growth of IIIIV Semiconductor Nanowires. Advanced Functional Materials, 2005, 15, 1603-1610 Epitaxially grown GaP/GaAs1WPx/GaP double heterostructure nanowires for optical applications. Nanotechnology, 2005, 16, 936-939 Nanometer-scale two-terminal semiconductor memory operating at room temperature. Applied	1.8 11.5 15.6	2 1 218 131 66

234	Three-photon cascade from single self-assembled InP quantum dots. <i>Physical Review B</i> , 2004 , 69,	3.3	37
233	Interband transitions in InAs quantum dots in InP studied by photoconductivity and photoluminescence techniques. <i>Journal of Applied Physics</i> , 2004 , 95, 8007-8010	2.5	8
232	Intersubband photoconductivity of self-assembled InAs quantum dots embedded in InP. <i>Journal of Applied Physics</i> , 2004 , 95, 1829-1831	2.5	9
231	Defect-free InP nanowires grown in [001] direction on InP (001). <i>Applied Physics Letters</i> , 2004 , 85, 2077	-29,79	159
230	Photoexcitation of excitons in self-assembled quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 5046-50	48 .4	6
229	Stacked InAs quantum dots in InP studied by cross-sectional scanning tunnelling microscopy. <i>Nanotechnology</i> , 2004 , 15, 1701-1707	3.4	12
228	Probing of individual semiconductor nanowhiskers by TEM-STM. <i>Microscopy and Microanalysis</i> , 2004 , 10, 41-6	0.5	27
227	Synthesis of branched @anotrees by controlled seeding of multiple branching events. <i>Nature Materials</i> , 2004 , 3, 380-4	27	544
226	Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. <i>Nature Materials</i> , 2004 , 3, 519-23	27	75
225	Solid-phase diffusion mechanism for GaAs nanowire growth. <i>Nature Materials</i> , 2004 , 3, 677-81	27	593
224	Growth of GaP nanotree structures by sequential seeding of 1D nanowires. <i>Journal of Crystal Growth</i> , 2004 , 272, 131-137	1.6	43
223	Electron transport in InAs nanowires and heterostructure nanowire devices. <i>Solid State Communications</i> , 2004 , 131, 573-579	1.6	122
222	Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. <i>Journal of Crystal Growth</i> , 2004 , 260, 18-22	1.6	104
221	Growth mechanisms for GaAs nanowires grown in CBE. <i>Journal of Crystal Growth</i> , 2004 , 272, 167-174	1.6	50
220	Growth of one-dimensional nanostructures in MOVPE. <i>Journal of Crystal Growth</i> , 2004 , 272, 211-220	1.6	255
219	Semiconductor nanowires for novel one-dimensional devices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 21, 560-567	3	57
218	Semiconductor nanowires for 0D and 1D physics and applications. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 25, 313-318	3	143
217	Charging control of InPtainP quantum dots by heterostructure design. <i>Applied Physics Letters</i> , 2004 , 85, 5043-5045	3.4	1

216	Epitaxial III I Nanowires on Silicon. <i>Nano Letters</i> , 2004 , 4, 1987-1990	11.5	477
215	Few-Electron Quantum Dots in Nanowires. <i>Nano Letters</i> , 2004 , 4, 1621-1625	11.5	253
214	Nanowire Arrays Defined by Nanoimprint Lithography. <i>Nano Letters</i> , 2004 , 4, 699-702	11.5	346
213	Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires. <i>Nano Letters</i> , 2004 , 4, 1961-196	411.5	302
212	Symmetry of two-terminal nonlinear electric conduction. <i>Physical Review Letters</i> , 2004 , 92, 046803	7.4	41
211	Electric field effects in single semiconductor quantum dots observed by scanning tunneling luminescence. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 2344		5
210	Foreword - Special issue on nanoelectronics. <i>IEEE Transactions on Electron Devices</i> , 2003 , 50, 1821-1822	2.9	
209	Nanoimprint technology for fabrication of three-terminal ballistic junction devices in GaInAs/InP. <i>Microelectronic Engineering</i> , 2003 , 67-68, 196-202	2.5	1
208	Surviving conduction symmetries in non-linear response. <i>Superlattices and Microstructures</i> , 2003 , 34, 173-177	2.8	
207	The influence of confining wall profile on quantum interference effects in etched Ga0.25In0.75As/InP billiards. <i>Superlattices and Microstructures</i> , 2003 , 34, 179-184	2.8	5
206	Self-forming nanoscale devices. <i>Materials Today</i> , 2003 , 6, 22-31	21.8	209
206	Self-forming nanoscale devices. <i>Materials Today</i> , 2003 , 6, 22-31 Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2238-2240	21.8 3.4	209 95
	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> ,		
205	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2238-2240 Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device.	3.4	95
205	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2238-2240 Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. <i>Applied Physics Letters</i> , 2003 , 83, 1881-1883 Fabrication of individually seeded nanowire arrays by vapour Iquid Igolid growth. <i>Nanotechnology</i> ,	3.4	95 160
205 204 203	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003, 83, 2238-2240 Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. <i>Applied Physics Letters</i> , 2003, 83, 1881-1883 Fabrication of individually seeded nanowire arrays by vapour lquid lolid growth. <i>Nanotechnology</i> , 2003, 14, 1255-1258 Fabrication and time-resolved studies of visible microdisk lasers. <i>Journal of Applied Physics</i> , 2003,	3·4 3·4	95 160 177
205 204 203 202	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003, 83, 2238-2240 Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. <i>Applied Physics Letters</i> , 2003, 83, 1881-1883 Fabrication of individually seeded nanowire arrays by vapour liquid solid growth. <i>Nanotechnology</i> , 2003, 14, 1255-1258 Fabrication and time-resolved studies of visible microdisk lasers. <i>Journal of Applied Physics</i> , 2003, 93, 2307-2309	3·4 3·4 2.5	95 160 177 14

198	Luminescence polarization of ordered GaInP/InP islands. <i>Applied Physics Letters</i> , 2003 , 82, 627-629	3.4	10
197	Spontaneous InAs quantum dot nucleation at strained InP/GaInAs interfaces. <i>Applied Physics Letters</i> , 2003 , 83, 4830-4832	3.4	7
196	Transport through an isolated artificial molecule formed from stacked self-assembled quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 2655-2657	3.4	21
195	Correlation between overgrowth morphology and optical properties of single self-assembled InP quantum dots. <i>Physical Review B</i> , 2003 , 68,	3.3	9
194	Epitaxial Quantum Wires: Growth, Properties and Applications 2003, 69-92		2
193	A novel device principle for nanoelectronics. <i>Materials Science and Engineering C</i> , 2002 , 19, 417-420	8.3	7
192	Coupling between lateral modes in a vertical resonant tunneling structure. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 950-953	3	1
191	Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 1126-1130	3	109
190	Thin layers of GaInP, GaP and GaAsP in metalorganic vapour phase epitaxy-grown resonant tunnelling diodes. <i>Applied Surface Science</i> , 2002 , 190, 252-257	6.7	1
189	Reduction of the Schottky barrier height on silicon carbide using Au nano-particles. <i>Solid-State Electronics</i> , 2002 , 46, 1433-1440	1.7	64
188	Metalorganic vapor phase epitaxy-grown GaP/GaAs/GaP and GaAsP/GaAs/GaAsP n-type resonant tunnelling diodes. <i>Applied Physics Letters</i> , 2002 , 80, 1841-1843	3.4	5
187	Optically induced charge storage and current generation in InAs quantum dots. <i>Physical Review B</i> , 2002 , 65,	3.3	8
186	Designed emitter states in resonant tunneling through quantum dots. <i>Applied Physics Letters</i> , 2002 , 80, 2681-2683	3.4	25
185	Quantum-dot-induced ordering in GaxIn1NP/InP islands. <i>Physical Review B</i> , 2002 , 66,	3.3	9
184	High frequency characterization of a GaInAs/InP electronic waveguide T-branch switch. <i>Journal of Applied Physics</i> , 2002 , 91, 2398-2402	2.5	26
183	Single InP/GaInP quantum dots studied by scanning tunneling microscopy and scanning tunneling microscopy induced luminescence. <i>Applied Physics Letters</i> , 2002 , 80, 494-496	3.4	20
182	Photon mapping of quantum dots using a scanning tunneling microscope. <i>Applied Physics Letters</i> , 2002 , 81, 4443-4445	3.4	26
181	Ultrahigh vacuum scanning probe investigations of metal induced void formation in SiO2/Si(111). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 226		2

(2001-2002)

180	Epitaxially overgrown, stable WtaAs Schottky contacts with sizes down to 50 nm. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 580		7
179	Nanoimprint lithography for fabrication of three-terminal ballistic junctions in InP/GaInAs. <i>Nanotechnology</i> , 2002 , 13, 666-668	3.4	12
178	Nanowire resonant tunneling diodes. <i>Applied Physics Letters</i> , 2002 , 81, 4458-4460	3.4	385
177	Correlation spectroscopy of excitons and biexcitons on a single quantum dot. <i>Physical Review A</i> , 2002 , 66,	2.6	19
176	Nanoscale tungsten aerosol particles embedded in GaAs. <i>Applied Physics Letters</i> , 2002 , 80, 2976-2978	3.4	4
175	One-dimensional heterostructures in semiconductor nanowhiskers. <i>Applied Physics Letters</i> , 2002 , 80, 1058-1060	3.4	541
174	One-dimensional Steeplechase for Electrons Realized. <i>Nano Letters</i> , 2002 , 2, 87-89	11.5	594
173	Anti-domain-free GaP, grown in atomically flat (001) Si sub-th-sized openings. <i>Applied Physics Letters</i> , 2002 , 80, 4546-4548	3.4	9
172	A novel frequency-multiplication device based on three-terminal ballistic junction. <i>IEEE Electron Device Letters</i> , 2002 , 23, 377-379	4.4	50
171	AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. <i>Nanotechnology</i> , 2002 , 13, 108-113	3.4	55
170	Single-electron tunneling effects in a metallic double dot device. <i>Applied Physics Letters</i> , 2002 , 80, 667-	6694	13
169	Electron beam pre-patterning for site-control of self-assembled InAs quantum dots on Inp surfaces. Journal of Electronic Materials, 2001 , 30, 482-486	1.9	6
168	Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase. <i>Applied Physics Letters</i> , 2001 , 78, 3708-3710	3.4	78
167	Operation of InGaAs/InP-Based Ballistic Rectifiers at Room Temperature and Frequencies up to 50 GHz. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L909-L911	1.4	48
166	Room-temperature and 50 GHz operation of a functional nanomaterial. <i>Applied Physics Letters</i> , 2001 , 79, 1357-1359	3.4	75
165	Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions. <i>Applied Physics Letters</i> , 2001 , 79, 1384-1386	3.4	112
164	Bias-voltage-induced asymmetry in nanoelectronic Y-branches. <i>Applied Physics Letters</i> , 2001 , 79, 3287-3	323829	94
163	Case study of an InAs quantum dot memory: Optical storing and deletion of charge. <i>Applied Physics Letters</i> , 2001 , 79, 78-80	3.4	63

162	Photoluminescence polarization of single InP quantum dots. <i>Physical Review B</i> , 2001 , 63,	3.3	20
161	High peak-to-valley ratios observed in InAs/InP resonant tunneling quantum dot stacks. <i>Applied Physics Letters</i> , 2001 , 78, 3232-3234	3.4	36
160	Electron beam prepatterning for site control of self-assembled quantum dots. <i>Applied Physics Letters</i> , 2001 , 78, 1367-1369	3.4	18
159	Bandgap modification in GaInAs/InP quantum well structures using switched ion channelling lithography. <i>Semiconductor Science and Technology</i> , 2001 , 16, 889-894	1.8	2
158	Single quantum dots emit single photons at a time: Antibunching experiments. <i>Applied Physics Letters</i> , 2001 , 78, 2476-2478	3.4	183
157	Size-, shape-, and position-controlled GaAs nano-whiskers. <i>Applied Physics Letters</i> , 2001 , 79, 3335-3337	3.4	233
156	Electron accumulation in single InP quantum dots observed by photoluminescence. <i>Physical Review B</i> , 2001 , 64,	3.3	42
155	Gold nanoparticle single-electron transistor with carbon nanotube leads. <i>Applied Physics Letters</i> , 2001 , 79, 2106-2108	3.4	79
154	Growth of InAs quantum dots on {110}-oriented cleaved GaAs surfaces. <i>Springer Proceedings in Physics</i> , 2001 , 383-384	0.2	1
153	MOVPE overgrowth of metallic features for realisation of 3D metalBemiconductor quantum devices. <i>Journal of Crystal Growth</i> , 2000 , 221, 704-712	1.6	13
152	Simulation of interference patterns in solid-state biprism devices. Solid-State Electronics, 2000, 44, 1275	5-1. 2 80	O
151	Optical investigation of InAs/InP quantum dots at different temperatures and under electric field. <i>Thin Solid Films</i> , 2000 , 364, 161-164	2.2	15
150	Studies of self-assembled InP quantum dots in planar microcavities. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 69-70, 314-317	3.1	3
149	Conductance oscillations induced by longitudinal resonant states in heteroepitaxially defined Ga0.25In0.75As/InP electron waveguides. <i>Applied Physics Letters</i> , 2000 , 76, 2274-2276	3.4	17
148	Indium enrichment in Ga1IIInxP self-assembled quantum dots. <i>Journal of Applied Physics</i> , 2000 , 88, 6378	8- <u>6.3</u> 81	3
147	Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. <i>Physical Review B</i> , 2000 , 61, 11021-	130324	145
146	Effects of charged self-assembled quantum dots on two-dimensional quantum transport. <i>Applied Physics Letters</i> , 2000 , 76, 1704-1706	3.4	13
145	Electrical and optical properties of self-assembled InAs quantum dots in InP studied by space-charge spectroscopy and photoluminescence. <i>Physical Review B</i> , 2000 , 61, 4795-4800	3.3	36

144	Gated Tunneling Structures with Buried Tungsten Grating Adjacent to Semiconductor Heterostructures. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 3466-3469	1.4	4
143	Aerosol Fabrication of Nanocrystals of InP. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 1056-1059	1.4	6
142	Correlation of InGaP(001) surface structure during growth and bulk ordering. <i>Physical Review B</i> , 1999 , 60, 8185-8190	3.3	48
141	Lateral confinement in a resonant tunneling transistor with a buried metallic gate. <i>Applied Physics Letters</i> , 1999 , 74, 311-313	3.4	13
140	Optical response of reconstructed GaP(001) surfaces. <i>Physical Review B</i> , 1999 , 60, 11557-11563	3.3	13
139	Random telegraph noise in photoluminescence from individual self-assembled quantum dots. <i>Physical Review B</i> , 1999 , 59, 10725-10729	3.3	59
138	Mechanical tuning of tunnel gaps for the assembly of single-electron transistors. <i>Applied Physics Letters</i> , 1999 , 75, 1461-1463	3.4	17
137	Cathodoluminescence spectroscopy and imaging of individual GaN dots. <i>Applied Physics Letters</i> , 1999 , 74, 3513-3515	3.4	26
136	Electronic structure of self-assembled InAs quantum dots in InP: An anisotropic quantum-dot system. <i>Physical Review B</i> , 1999 , 60, R11289-R11292	3.3	24
135	Time-resolved studies of single semiconductor quantum dots. <i>Physical Review B</i> , 1999 , 59, 5021-5025	3.3	53
134	Optical investigations of individual InAs quantum dots: Level splittings of exciton complexes. <i>Physical Review B</i> , 1999 , 60, 16640-16646	3.3	60
133	Single-electron devices via controlled assembly of designed nanoparticles. <i>Microelectronic Engineering</i> , 1999 , 47, 179-183	2.5	26
132	Gold Nanoparticles: Production, Reshaping, and Thermal Charging. <i>Journal of Nanoparticle Research</i> , 1999 , 1, 243-251	2.3	242
131	Size-selected gold nanoparticles by aerosol technology. <i>Scripta Materialia</i> , 1999 , 12, 45-48		118
130	Manipulating InAs Dots with GaAs Patterns: Effect of GaAs Buffer Layer Growth and Pattern Profiles. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 571, 319		
129	Growth of self-assembled InAs and InAsxP1⊠ dots on InP by metalorganic vapour phase epitaxy. Journal of Crystal Growth, 1998 , 191, 347-356	1.6	84
128	InAs quantum dots in GaAs holes: island number dependence on hole diameter and conduction-band coupling estimates. <i>Superlattices and Microstructures</i> , 1998 , 23, 1347-1352	2.8	11
127	Performance and design of vertical, ballistic, heterostructure field-effect transistors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 51, 76-80	3.1	2

126	Size reduction of self assembled quantum dots by annealing. <i>Applied Surface Science</i> , 1998 , 134, 47-52	6.7	15
125	Size-selected nanocrystals of IIIIV semiconductor materials by the aerotaxy method. <i>Journal of Aerosol Science</i> , 1998 , 29, 737-748	4.3	16
124	Fabrication of quantum devices by figstrfh-level manipulation of nanoparticles with an atomic force microscope. <i>Applied Physics Letters</i> , 1998 , 72, 548-550	3.4	81
123	Electrical characterization of InP/GaInP quantum dots by space charge spectroscopy. <i>Journal of Applied Physics</i> , 1998 , 84, 3747-3755	2.5	53
122	Optical studies of individual InAs quantum dots in GaAs: few-particle effects. <i>Science</i> , 1998 , 280, 262-4	33.3	253
121	Local probe techniques for luminescence studies of low-dimensional semiconductor structures. Journal of Applied Physics, 1998 , 84, 1715-1775	2.5	146
120	Kinetics of electron charging and discharging on embedded W disks in GaAs. <i>Physical Review B</i> , 1998 , 58, R4207-R4210	3.3	10
119	Quantum transport in high mobility modulation doped Ga0.25In0.75As/InP quantum wells. <i>Journal of Applied Physics</i> , 1998 , 84, 2112-2122	2.5	20
118	Magnetoluminescence of self-assembled InP dots of various sizes. <i>Physical Review B</i> , 1998 , 58, 2026-20	39 .3	6
117	A reflection high-energy electron diffraction and atomic force microscopy study of the chemical beam epitaxial growth of InAs and InP islands on (001) GaP. <i>Applied Physics Letters</i> , 1998 , 72, 954-956	3.4	43
116	Spectroscopy, Imaging and Switching Behaviour of Individual InP/GaInP Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4188-4190	1.4	12
115	Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. <i>Applied Physics Letters</i> , 1997 , 70, 2828-2830	3.4	6
114	Quantized conductance in a heterostructurally defined Ga0.25In0.75As/InP quantum wire. <i>Applied Physics Letters</i> , 1997 , 71, 918-920	3.4	51
113	Landau level formation in semiconductor quantum dots in a high magnetic field. <i>Applied Physics Letters</i> , 1997 , 71, 2316-2318	3.4	14
112	Reversible transition between InGaAs dot structure and InGaAsP flat surface. <i>Applied Physics Letters</i> , 1997 , 71, 797-799	3.4	34
111	Lateral current-constriction in vertical devices using openings in buried lattices of metallic discs. <i>Applied Physics Letters</i> , 1997 , 71, 2803-2805	3.4	18
110	Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L1628-L1631	1.4	22
109	Tuning of the single-particle relaxation time of a high mobility electron gas in a Ga0.25In0.75As/InP quantum well. <i>Applied Physics Letters</i> , 1997 , 70, 243-245	3.4	6

108	Electronic structure of strained InP/Ga0.51In0.49P quantum dots. <i>Physical Review B</i> , 1997 , 56, 10404-1	043131	180
107	Size-selected GaN and InN nanocrystals. <i>Journal of Aerosol Science</i> , 1997 , 28, S471-S472	4.3	1
106	InP nanocrystals by aerotaxy method. <i>Journal of Aerosol Science</i> , 1997 , 28, S487-S488	4.3	
105	MOVPE growth of InPGaInAs and GaAsGaInP heterostructures for electronic transport applications. Journal of Crystal Growth, 1997 , 170, 127-131	1.6	7
104	Manipulating InAs island sizes with chemical beam epitaxy growth on GaAs patterns. <i>Journal of Crystal Growth</i> , 1997 , 175-176, 747-753	1.6	4
103	Operation of a ballistic heterojunction permeable base transistor. <i>IEEE Transactions on Electron Devices</i> , 1997 , 44, 1829-1836	2.9	10
102	AFM-based fabrication of lateral single-electron tunneling structures for elevated temperature operation. <i>Microelectronic Engineering</i> , 1997 , 35, 281-284	2.5	4
101	In situ growth of nano-structures by metal-organic vapour phase epitaxy. <i>Journal of Crystal Growth</i> , 1997 , 170, 39-46	1.6	69
100	Ga0.25In0.75As/InP quantum wells with extremely high and anisotropic two-dimensional electron gas mobilities. <i>Applied Physics Letters</i> , 1996 , 68, 1111-1113	3.4	46
99	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614	1.7	14
98	A comparison of RHEED reconstruction phases on (100) InAs, GaAs and InP. <i>Journal of Crystal Growth</i> , 1996 , 164, 66-70	1.6	21
97	Directional dependence of InAs island formation on patterned GaAs. <i>Journal of Crystal Growth</i> , 1996 , 164, 345-355	1.6	4
96	A new method to fabricate size-selected compound semiconductor nanocrystals: aerotaxy. <i>Journal of Crystal Growth</i> , 1996 , 169, 13-19	1.6	31
95	In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode. <i>Progress in Crystal Growth and Characterization of Materials</i> , 1996 , 33, 423-471	3.5	187
94	STM-based luminescence spectroscopy on single quantum dots. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 42, 82-87	3.1	5
93	Stacking InAs islands and GaAs layers: Strongly modulated one-dimensional electronic systems. Journal of Applied Physics, 1996 , 80, 3360-3364	2.5	43
92	Alignment of InP Stranski K rastanow dots by growth on patterned GaAs/GaInP surfaces. <i>Applied Physics Letters</i> , 1996 , 68, 1684-1686	3.4	76
91	Planarization of epitaxial GaAs overgrowth over tungsten wires. <i>Journal of Applied Physics</i> , 1996 , 79, 500-503	2.5	17

90	Stark effect in individual luminescent centers observed by tunneling luminescence. <i>Applied Physics Letters</i> , 1996 , 68, 60-62	3.4	30
89	Excited states of individual quantum dots studied by photoluminescence spectroscopy. <i>Applied Physics Letters</i> , 1996 , 69, 749-751	3.4	113
88	Assembling strained InAs islands on patterned GaAs substrates with chemical beam epitaxy. <i>Applied Physics Letters</i> , 1996 , 68, 2228-2230	3.4	88
87	Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals. <i>Applied Physics Letters</i> , 1996 , 68, 1409-1411	3.4	19
86	Optical characterization of quantum wires and quantum dots. <i>Physica Status Solidi A</i> , 1995 , 152, 269-280)	14
85	Cathodoluminescence investigations of three-dimensional island formation in InAsInP quantum wells. <i>Journal of Crystal Growth</i> , 1995 , 147, 27-34	1.6	20
84	Improved size homogeneity of InP-on-GaInP Stranski-Krastanow islands by growth on a thin GaP interface layer. <i>Journal of Crystal Growth</i> , 1995 , 156, 23-29	1.6	49
83	Damage induced by plasma etching: On the correlation of results from photoluminescence and transport characterization techniques. <i>Applied Physics Letters</i> , 1995 , 66, 1403-1405	3.4	5
82	Contact mode atomic force microscopy imaging of nanometer-sized particles. <i>Applied Physics Letters</i> , 1995 , 66, 3295-3297	3.4	39
81	Imaging and spectroscopic studies of individual impurities in quantum structures. <i>Physical Review Letters</i> , 1995 , 74, 2395-2398	7.4	15
80	GaAs Metalorganic Vapour Phase Epitaxial Overgrowth over nm-Sized Tungsten Wires. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4414-4416	1.4	11
79	Nano-Optical Studies of Individual Nanostructures. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4392-4	43 <u>9</u> 7	20
78	Controlled manipulation of nanoparticles with an atomic force microscope. <i>Applied Physics Letters</i> , 1995 , 66, 3627-3629	3.4	351
77	Observation of strain effects in semiconductor dots depending on cap layer thickness. <i>Applied Physics Letters</i> , 1995 , 67, 1438-1440	3.4	65
76	Deep level transient spectroscopy of InP quantum dots. <i>Applied Physics Letters</i> , 1995 , 67, 3016-3018	3.4	86
75	Transmission electron microscopy investigation of the morphology of InP Stranskißrastanow islands grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 67, 2981-2982	3.4	96
74	Band filling at low optical power density in semiconductor dots. <i>Applied Physics Letters</i> , 1995 , 67, 1905-	1 <u>9.</u> 47	51
73	Vertically-Stacked InAs Islands between GaAs Barriers Grown by Chemical Beam Epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 417, 117		1

Aerotaxy: A New Route to Formation of GaAs Nanocrystals from Ga Droplets. *Materials Research Society Symposia Proceedings*, **1995**, 417, 123

71	Strain Effects in InP Dots in between Barriers of GaInP. <i>Materials Research Society Symposia</i> Proceedings, 1995 , 417, 233		
70	Cathodoluminescence imaging of quantum wells: The influence of exciton transfer on the apparent island size. <i>Physical Review B</i> , 1994 , 50, 11827-11832	3.3	11
69	Study of the two-dimensional three-dimensional growth mode transition in metalorganic vapor phase epitaxy of GaInP/InP quantum-sized structures. <i>Applied Physics Letters</i> , 1994 , 65, 3093-3095	3.4	190
68	Formation of interface layers in GaxIn1NAs/InP heterostructures: A re-evaluation using ultrathin quantum wells as a probe. <i>Journal of Applied Physics</i> , 1994 , 75, 1501-1510	2.5	34
67	Sintered aerosol masks for dry-etched quantum dots. <i>Applied Physics Letters</i> , 1994 , 64, 3293-3295	3.4	26
66	Aerosol particles from metalorganic vapor phase epitaxy bubblers. <i>Journal of Crystal Growth</i> , 1994 , 145, 636-641	1.6	3
65	Metalorganic vapour phase epitaxy grown quantum-well structures within barriers of InP and GaInP - a comparison. <i>Journal of Crystal Growth</i> , 1994 , 145, 758-763	1.6	11
64	Cathodoluminescence of single quantum wires and vertical quantum wells grown on a submicron grating. <i>Applied Physics Letters</i> , 1994 , 64, 695-697	3.4	10
63	Luminescence Spectroscopy on Individual Nanostructures and Impurity Atoms Using Stm and Sem. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 375, 157		
62	Reevaluation of blueshifts introduced by lateral confinement in quantum-well wire structures. <i>Applied Physics Letters</i> , 1993 , 62, 1709-1711	3.4	7
61	Influence of arsenic adsorption layers on heterointerfaces in GaInAs/InP quantum well structures. <i>Applied Physics Letters</i> , 1993 , 62, 949-951	3.4	20
60	Real-time monitoring of the reaction of H2S on GaAs. <i>Journal of Applied Physics</i> , 1993 , 74, 6146-6149	2.5	0
59	Extended, monolayer flat islands and exciton dynamics in Ga0.47In0.53As/InP quantum-well structures. <i>Physical Review B</i> , 1993 , 47, 2203-2215	3.3	18
58	Direct observation of growth rate transients during homoepitaxy of GaAs. <i>Thin Solid Films</i> , 1993 , 224, 133-136	2.2	7
57	Properties of thin strained layers of GaAs grown on InP. <i>Physical Review B</i> , 1992 , 45, 3628-3635	3.3	31
56	Nanometer patterning of InP using aerosol and plasma etching techniques. <i>Applied Physics Letters</i> , 1992 , 61, 837-839	3.4	30
55	Optical detection of growth oscillations from high vacuum up to low-pressure metalorganic vapor phase epitaxy like conditions. <i>Applied Physics Letters</i> , 1992 , 61, 1558-1560	3.4	13

54	Fabrication and imaging of quantum-well wire structures 1992 , 1676, 154		2
53	Reflectance difference for in-situ characterization of surfaces and epitaxial growth of GaAs on (001) GaAs 1992,		5
52	Optical Studies of InP / GaAs / InP Single Strained Layers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 281, 203		
51	Studies of Quantum Dots Fabricated by Combining Aerosol and Plasma Etching Techiques. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 283, 789		2
50	Real-time monolayer growth oscillations detected by RD at pressures up to LP-MOVPE. <i>Journal of Crystal Growth</i> , 1992 , 124, 30-36	1.6	9
49	CBE growth of (001) GaAs: RHEED and RD studies. <i>Journal of Crystal Growth</i> , 1992 , 124, 23-29	1.6	8
48	Analysis of growth conditions for the deposition of monolayers of GaInAs, GaAs and InAs in InP by LP-MOVPE. <i>Journal of Crystal Growth</i> , 1992 , 124, 531-535	1.6	11
47	Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. <i>Ultramicroscopy</i> , 1992 , 42-44, 210-214	3.1	14
46	MOVPE growth and characterization of strained layers. <i>Journal of Crystal Growth</i> , 1991 , 107, 458-467	1.6	9
45	Reflectance-difference probing of surface kinetics of (001) GaAs during vacuum chemical epitaxy. <i>Journal of Crystal Growth</i> , 1991 , 111, 115-119	1.6	18
44	Reflectance-difference study of surface chemistry in MOVPE growth. <i>Journal of Crystal Growth</i> , 1991 , 107, 68-72	1.6	25
43	Reflectance difference for in situ control of surface V/III ratio during epitaxial growth of GaAs. <i>Journal of Applied Physics</i> , 1991 , 70, 1737-1741	2.5	13
42	Direct type IIIndirect type I conversion of InP/GaAs/InP strained quantum wells induced by hydrostatic pressure. <i>Applied Physics Letters</i> , 1991 , 59, 806-808	3.4	13
41	Dislocations in mismatched layers of GaAsxP1\(\text{lin}\) in between GaP as observed by low-temperature cathodoluminescence: Part I. Grown on (001) oriented substrates <i>Journal of Applied Physics</i> , 1991 , 70, 1660-1666	2.5	10
40	On the formation of the SbGa heteroantisite in metalorganic vapor-phase epitaxial GaAs:Sb. <i>Applied Physics Letters</i> , 1991 , 59, 1323-1325	3.4	25
39	Electronic properties of the SbGa heteroantisite defect in GaAs:Sb. <i>Physical Review B</i> , 1991 , 44, 13398-1	13,4903	8
38	In Situ Diagnostics Of Epitaxial Growth Using Reflectance-Difference. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 47		1
37	Single-monolayer quantum wells of GaInAs in InP grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 56, 1128-1130	3.4	33

36	Excitons bound to nitrogen pairs in GaAs. <i>Physical Review B</i> , 1990 , 42, 7504-7512	3.3	66
35	Donor states in GaAs under hydrostatic pressure. <i>Physical Review B</i> , 1990 , 42, 11791-11800	3.3	15
34	Optical detection of growth oscillations in high vacuum metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 56, 2414-2416	3.4	32
33	Nitrogen pair luminescence in GaAs. <i>Applied Physics Letters</i> , 1990 , 56, 1451-1453	3.4	160
32	Cathodoluminescence observation of extended monolayer-flat terraces at the heterointerface of GaInAs/InP single quantum wells grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 57, 878-880	3.4	17
31	Hole ionization of Mn-doped GaAs: Photoluminescence versus space-charge techniques. <i>Physical Review B</i> , 1989 , 40, 5598-5601	3.3	16
30	On the growth of gallium phosphide layers on gallium phosphide substrates by MOVPE. <i>Journal of Electronic Materials</i> , 1989 , 18, 25-31	1.9	22
29	Effects of alloying and hydrostatic pressure on the luminescence of Mn in GaAs. <i>Journal of Luminescence</i> , 1988 , 40-41, 127-128	3.8	10
28	Growth and characterization of strained layers of GaAsxP1⊠. <i>Journal of Crystal Growth</i> , 1988 , 93, 504-51	11.6	37
27	Identification of a second energy level of EL2 in n-type GaAs. <i>Physical Review B</i> , 1988 , 38, 3606-3609	3.3	30
26	Hole photoionization cross sections of EL2 in GaAs. <i>Applied Physics Letters</i> , 1988 , 52, 1689-1691	3.4	146
25	Stability towards photoelectrochemical etching in Ga(As, P) alloys. <i>Journal of Applied Physics</i> , 1988 , 63, 530-532	2.5	2
24	Characterization of the Mn acceptor level in GaAs. <i>Journal of Applied Physics</i> , 1988 , 64, 1564-1567	2.5	19
23	Properties of thin strained Ga(As,P) layers. <i>Physical Review B</i> , 1988 , 37, 4664-4670	3.3	24
22	Effects of hydrostatic pressure and phosphorus alloying on the Ag acceptor level in GaAs. <i>Physical Review B</i> , 1988 , 38, 8293-8295	3.3	5
21	Effects of stoichiometry on deep levels in MOVPE GaP. <i>Semiconductor Science and Technology</i> , 1988 , 3, 488-493	1.8	11
20	Novel reactor design for large area uniformity of abrupt heterojunction structures. <i>Journal of Crystal Growth</i> , 1986 , 77, 67-72	1.6	20
19	Mechanism for spatial separation of charge carriers in inhomogeneous semiconductor alloys. <i>Physical Review B</i> , 1986 , 33, 8776-8778	3.3	14

18	Antisite-related defects in plastically deformed GaAs. <i>Physical Review B</i> , 1986 , 33, 5880-5883	3.3	41
17	Properties of the EL2 level in GaAs1-xPx. <i>Physical Review B</i> , 1986 , 34, 5603-5609	3.3	22
16	Photoluminescence study of localization effects induced by the fluctuating random alloy potential in indirect band-gap GaAs1-xPx. <i>Physical Review B</i> , 1985 , 32, 8220-8227	3.3	77
15	Copper deep acceptors in GaAs1-xPxalloy system. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 10	17-102	4 7
14	Evidence that the 0.635-eV luminescence band in semi-insulating GaAs is not EL2 related. <i>Applied Physics Letters</i> , 1984 , 45, 521-523	3.4	15
13	Direct Evidence for Random-Alloy Splitting of Cu Levels in GaAs1\(\mathbb{U}\)Px. <i>Physical Review Letters</i> , 1984 , 53, 1501-1503	7.4	65
12	Metastable state of EL2 in the GaAs1⊠Px alloy system. <i>Physical Review B</i> , 1984 , 29, 4534-4539	3.3	38
11	Disorder-induced Anderson localization in GaAs1NPx. <i>Solid State Communications</i> , 1984 , 52, 789-792	1.6	16
10	Electrical and optical properties of GaP grown on Si by MOVPE. Journal of Crystal Growth, 1984, 68, 34	0-3.464	27
9	Optical and thermal properties of Fe in GaP. Solid State Communications, 1983, 48, 427-430	1.6	17
8	Deep level transient spectroscopy evaluation of nonexponential transients in semiconductor alloys. <i>Journal of Applied Physics</i> , 1983 , 54, 5117-5122	2.5	180
7	Alloying mechanisms in MOVPE GaAs1-xPx. Journal of Crystal Growth, 1983, 61, 425-426	1.6	43
6	Electrical and optical properties of deep levels in MOVPE grown GaAs. <i>Journal of Crystal Growth</i> , 1981 , 55, 164-172	1.6	88
5	Properties of deep Cu levels in GaP. <i>Solid-State Electronics</i> , 1978 , 21, 1505-1508	1.7	20
4	Reevaluation of bandgap and free exciton binding energy of GaP. <i>Solid State Communications</i> , 1978 , 26, 165-167	1.6	12
3	Optical transitions via the deep O donor in GaP. II. Temperature dependence of cross sections. <i>Physical Review B</i> , 1978 , 18, 830-843	3.3	41
2	Optical transitions via the deep O donor in GaP. I. Phonon interaction in low-temperature spectra. <i>Physical Review B</i> , 1978 , 18, 809-829	3.3	99
1	Indium Arsenide (InAs) Nanowire Wrapped-Insulator-Gate Field-Effect Transistor29		