Lars Samuelson

List of Publications by Citations

Source: https://exaly.com/author-pdf/8125085/lars-samuelson-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 521
 28,885
 87
 150

 papers
 citations
 h-index
 g-index

 556
 30,946
 5.6
 6.74

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
521	InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. <i>Science</i> , 2013 , 339, 1057-60	33.3	962
520	One-dimensional Steeplechase for Electrons Realized. <i>Nano Letters</i> , 2002 , 2, 87-89	11.5	594
519	Solid-phase diffusion mechanism for GaAs nanowire growth. <i>Nature Materials</i> , 2004 , 3, 677-81	27	593
518	Controlled polytypic and twin-plane superlattices in iii-v nanowires. <i>Nature Nanotechnology</i> , 2009 , 4, 50-5	28.7	577
517	Synthesis of branched @anotrees by controlled seeding of multiple branching events. <i>Nature Materials</i> , 2004 , 3, 380-4	27	544
516	One-dimensional heterostructures in semiconductor nanowhiskers. <i>Applied Physics Letters</i> , 2002 , 80, 1058-1060	3.4	541
515	Epitaxial IIIIV Nanowires on Silicon. <i>Nano Letters</i> , 2004 , 4, 1987-1990	11.5	477
514	Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. <i>Physical Review B</i> , 2009 , 80,	3.3	399
513	Nanowire resonant tunneling diodes. <i>Applied Physics Letters</i> , 2002 , 81, 4458-4460	3.4	385
512	Structural properties of B -oriented III-V nanowires. <i>Nature Materials</i> , 2006 , 5, 574-80	27	381
511	Single-electron transistors in heterostructure nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2052-2054	3.4	370
510	Controlled manipulation of nanoparticles with an atomic force microscope. <i>Applied Physics Letters</i> , 1995 , 66, 3627-3629	3.4	351
509	Nanowire Arrays Defined by Nanoimprint Lithography. <i>Nano Letters</i> , 2004 , 4, 699-702	11.5	346
508	Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires. <i>Nano Letters</i> , 2004 , 4, 1961-196	411.5	302
507	. IEEE Electron Device Letters, 2006 , 27, 323-325	4.4	290
506	Optical properties of rotationally twinned InP nanowire heterostructures. <i>Nano Letters</i> , 2008 , 8, 836-41	11.5	283
505	Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. <i>Advanced Materials</i> , 2009 , 21, 153-165	24	272

(1996-2005)

504	Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. <i>Nano Letters</i> , 2005 , 5, 761-4	11.5	268
503	Growth of one-dimensional nanostructures in MOVPE. Journal of Crystal Growth, 2004, 272, 211-220	1.6	255
502	Few-Electron Quantum Dots in Nanowires. <i>Nano Letters</i> , 2004 , 4, 1621-1625	11.5	253
501	Optical studies of individual InAs quantum dots in GaAs: few-particle effects. <i>Science</i> , 1998 , 280, 262-4	33.3	253
500	Gold Nanoparticles: Production, Reshaping, and Thermal Charging. <i>Journal of Nanoparticle Research</i> , 1999 , 1, 243-251	2.3	242
499	Size-, shape-, and position-controlled GaAs nano-whiskers. <i>Applied Physics Letters</i> , 2001 , 79, 3335-3337	3.4	233
498	A GaAs Nanowire Array Solar Cell With 15.3% Efficiency at 1 Sun. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 185-190	3.7	229
497	Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. <i>Physical Review Letters</i> , 2007 , 98, 266801	7.4	222
496	Growth and optical properties of strained GaAs-GaxIn 1-x P core-shell nanowires. <i>Nano Letters</i> , 2005 , 5, 1943-7	11.5	218
495	Self-forming nanoscale devices. <i>Materials Today</i> , 2003 , 6, 22-31	21.8	209
495 494	Self-forming nanoscale devices. <i>Materials Today</i> , 2003 , 6, 22-31 Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9	21.8	209
494	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9	11.5	205
494	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9 Giant, level-dependent g factors in InSb nanowire quantum dots. <i>Nano Letters</i> , 2009 , 9, 3151-6 Control of IIIIV nanowire crystal structure by growth parameter tuning. <i>Semiconductor Science and</i>	11.5	205
494 493 492	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9 Giant, level-dependent g factors in InSb nanowire quantum dots. <i>Nano Letters</i> , 2009 , 9, 3151-6 Control of IIII nanowire crystal structure by growth parameter tuning. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024009	11.5 11.5 1.8	205 201 200
494 493 492 491	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9 Giant, level-dependent g factors in InSb nanowire quantum dots. <i>Nano Letters</i> , 2009 , 9, 3151-6 Control of IIIIV nanowire crystal structure by growth parameter tuning. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024009 Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. <i>Nanotechnology</i> , 2008 , 19, 305201	11.5 11.5 1.8	205 201 200 196
494 493 492 491 490	Crystal phase engineering in single InAs nanowires. <i>Nano Letters</i> , 2010 , 10, 3494-9 Giant, level-dependent g factors in InSb nanowire quantum dots. <i>Nano Letters</i> , 2009 , 9, 3151-6 Control of IIIIV nanowire crystal structure by growth parameter tuning. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024009 Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. <i>Nanotechnology</i> , 2008 , 19, 305201 Au-free epitaxial growth of InAs nanowires. <i>Nano Letters</i> , 2006 , 6, 1817-21 Study of the two-dimensionalthree-dimensional growth mode transition in metalorganic vapor	11.5 11.5 1.8 3.4 11.5	205 201 200 196

486	Mass transport model for semiconductor nanowire growth. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13567-71	3.4	186
485	Single quantum dots emit single photons at a time: Antibunching experiments. <i>Applied Physics Letters</i> , 2001 , 78, 2476-2478	3.4	183
484	Electronic structure of strained InP/Ga0.51In0.49P quantum dots. <i>Physical Review B</i> , 1997 , 56, 10404-10	043131	180
483	Deep level transient spectroscopy evaluation of nonexponential transients in semiconductor alloys. Journal of Applied Physics, 1983 , 54, 5117-5122	2.5	180
482	Fabrication of individually seeded nanowire arrays by vapour[]quidBolid growth. <i>Nanotechnology</i> , 2003 , 14, 1255-1258	3.4	177
481	Gallium phosphide nanowires as a substrate for cultured neurons. <i>Nano Letters</i> , 2007 , 7, 2960-5	11.5	165
480	The morphology of axial and branched nanowire heterostructures. <i>Nano Letters</i> , 2007 , 7, 1817-22	11.5	161
479	Growth mechanism of self-catalyzed group III-V nanowires. <i>Nano Letters</i> , 2010 , 10, 4443-9	11.5	160
478	Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. <i>Nanotechnology</i> , 2007 , 18, 015504	3.4	160
477	Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. <i>Applied Physics Letters</i> , 2003 , 83, 1881-1883	3.4	160
476	Nitrogen pair luminescence in GaAs. <i>Applied Physics Letters</i> , 1990 , 56, 1451-1453	3.4	160
475	Defect-free InP nanowires grown in [001] direction on InP (001). Applied Physics Letters, 2004, 85, 2077-	2979	159
474	Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate. <i>IEEE Electron Device Letters</i> , 2008 , 29, 206-208	4.4	154
473	High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. <i>Small</i> , 2008 , 4, 878-82	11	153
472	Vertical wrap-gated nanowire transistors. <i>Nanotechnology</i> , 2006 , 17, S227-S230	3.4	149
471	Local probe techniques for luminescence studies of low-dimensional semiconductor structures. Journal of Applied Physics, 1998 , 84, 1715-1775	2.5	146
470	Hole photoionization cross sections of EL2 in GaAs. <i>Applied Physics Letters</i> , 1988 , 52, 1689-1691	3.4	146
469	Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. <i>Physical Review B</i> , 2000 , 61, 11021-	130324	145

(2019-2004)

46	68	Semiconductor nanowires for 0D and 1D physics and applications. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 25, 313-318	3	143	
46	67	Sulfur passivation for ohmic contact formation to InAs nanowires. <i>Nanotechnology</i> , 2007 , 18, 105307	3.4	141	
46	66	Spatially resolved Hall effect measurement in a single semiconductor nanowire. <i>Nature Nanotechnology</i> , 2012 , 7, 718-22	28.7	140	
46	55	Effects of Supersaturation on the Crystal Structure of Gold Seeded IIIN Nanowires. <i>Crystal Growth and Design</i> , 2009 , 9, 766-773	3.5	138	
46	64	Tunable double quantum dots in InAs nanowires defined by local gate electrodes. <i>Nano Letters</i> , 2005 , 5, 1487-90	11.5	135	
46	53	Continuous gas-phase synthesis of nanowires with tunable properties. <i>Nature</i> , 2012 , 492, 90-4	50.4	134	
46	ó2	A New Understanding of Au-Assisted Growth of IIIIV Semiconductor Nanowires. <i>Advanced Functional Materials</i> , 2005 , 15, 1603-1610	15.6	131	
46	ó1	Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. <i>Nano Letters</i> , 2006 , 6, 1842-6	11.5	125	
46	бо	Tunable effective g factor in InAs nanowire quantum dots. <i>Physical Review B</i> , 2005 , 72,	3.3	124	
45	59	Electron transport in InAs nanowires and heterostructure nanowire devices. <i>Solid State Communications</i> , 2004 , 131, 573-579	1.6	122	
45	, 8	Diameter Dependence of the Wurtzite Zinc Blende Transition in InAs Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3837-3842	3.8	121	
45	57	In situ etching for total control over axial and radial nanowire growth. <i>Nano Research</i> , 2010 , 3, 264-270	10	119	
45	56	Nanowire single-electron memory. <i>Nano Letters</i> , 2005 , 5, 635-8	11.5	119	
45	55	Size-selected gold nanoparticles by aerosol technology. <i>Scripta Materialia</i> , 1999 , 12, 45-48		118	
45	54	Spin relaxation in InAs nanowires studied by tunable weak antilocalization. <i>Physical Review B</i> , 2005 , 71,	3.3	117	
45	53	Excited states of individual quantum dots studied by photoluminescence spectroscopy. <i>Applied Physics Letters</i> , 1996 , 69, 749-751	3.4	113	
45	52	Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions. <i>Applied Physics Letters</i> , 2001 , 79, 1384-1386	3.4	112	
45	51	Synthesis and Applications of III-V Nanowires. <i>Chemical Reviews</i> , 2019 , 119, 9170-9220	68.1	109	

450	Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 1126-1130	3	109
449	Nanowires With Promise for Photovoltaics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 1050-1061	3.8	108
448	Axial InP nanowire tandem junction grown on a silicon substrate. <i>Nano Letters</i> , 2011 , 11, 2028-31	11.5	104
447	Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. <i>Journal of Crystal Growth</i> , 2004 , 260, 18-22	1.6	104
446	Optical transitions via the deep O donor in GaP. I. Phonon interaction in low-temperature spectra. <i>Physical Review B</i> , 1978 , 18, 809-829	3.3	99
445	Fifteen-piconewton force detection from neural growth cones using nanowire arrays. <i>Nano Letters</i> , 2010 , 10, 782-7	11.5	98
444	Few electron double quantum dots in InAs/InP nanowire heterostructures. <i>Nano Letters</i> , 2007 , 7, 243-6	11.5	96
443	Transmission electron microscopy investigation of the morphology of InP Stranskißrastanow islands grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 67, 2981-2982	3.4	96
442	Sharp exciton emission from single InAs quantum dots in GaAs nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2238-2240	3.4	95
441	Bias-voltage-induced asymmetry in nanoelectronic Y-branches. <i>Applied Physics Letters</i> , 2001 , 79, 3287-3	238.39	94
440	Phase segregation in AlInP shells on GaAs nanowires. <i>Nano Letters</i> , 2006 , 6, 2743-7	11.5	92
439	Electron trapping in InP nanowire FETs with stacking faults. <i>Nano Letters</i> , 2012 , 12, 151-5	11.5	90
438	Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. <i>Physical Review B</i> , 2011 , 83,	3.3	89
437	Precursor evaluation for in situ InP nanowire doping. <i>Nanotechnology</i> , 2008 , 19, 445602	3.4	88
436	Assembling strained InAs islands on patterned GaAs substrates with chemical beam epitaxy. <i>Applied Physics Letters</i> , 1996 , 68, 2228-2230	3.4	88
435	Electrical and optical properties of deep levels in MOVPE grown GaAs. <i>Journal of Crystal Growth</i> , 1981 , 55, 164-172	1.6	88
434	Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. <i>Nano Letters</i> , 2012 , 12, 1990-5	11.5	87
433	Deep level transient spectroscopy of InP quantum dots. <i>Applied Physics Letters</i> , 1995 , 67, 3016-3018	3.4	86

432	Growth of self-assembled InAs and InAsxP1 dots on InP by metalorganic vapour phase epitaxy. Journal of Crystal Growth, 1998, 191, 347-356	5	84
431	Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self-Assembled Organic Coatings. <i>Advanced Materials</i> , 2007 , 19, 1801-1806		84
430	Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small, 2013 , 9, 4006-16, 3905		83
429	The electrical and structural properties of n-type InAs nanowires grown from metal-organic precursors. <i>Nanotechnology</i> , 2010 , 21, 205703	ļ	83
428	Development of a Vertical Wrap-Gated InAs FET. IEEE Transactions on Electron Devices, 2008, 55, 3030-3036	5	83
427	InAs nanowire metal-oxide-semiconductor capacitors. <i>Applied Physics Letters</i> , 2008 , 92, 253509 3.4	ļ	81
426	GaAs/GaSb nanowire heterostructures grown by MOVPE. Journal of Crystal Growth, 2008, 310, 4115-4121.6	ó	81
425	Surface diffusion effects on growth of nanowires by chemical beam epitaxy. <i>Journal of Applied Physics</i> , 2007 , 101, 034313	5	81
424	Fabrication of quantum devices by figstrfh-level manipulation of nanoparticles with an atomic force microscope. <i>Applied Physics Letters</i> , 1998 , 72, 548-550	ļ	81
423	Growth and characterization of defect free GaAs nanowires. <i>Journal of Crystal Growth</i> , 2006 , 287, 504-5086	6	80
422	Probing strain in bent semiconductor nanowires with Raman spectroscopy. <i>Nano Letters</i> , 2010 , 10, 1280-61.	.5	79
421	III-V Nanowires E xtending a Narrowing Road. <i>Proceedings of the IEEE</i> , 2010 , 98, 2047-2060	.3	79
420	Gold nanoparticle single-electron transistor with carbon nanotube leads. <i>Applied Physics Letters</i> , 2001 , 79, 2106-2108	ļ	79
419	Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase. Applied Physics Letters, 2001 , 78, 3708-3710 3-4	ļ	78
418	Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. <i>Nano Letters</i> , 2010 , 10, 4807-12	.5	77
417	Position-controlled interconnected InAs nanowire networks. <i>Nano Letters</i> , 2006 , 6, 2842-7	.5	77
416	Photoluminescence study of localization effects induced by the fluctuating random alloy potential in indirect band-gap GaAs1-xPx. <i>Physical Review B</i> , 1985 , 32, 8220-8227	}	77
415	Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano, 2012, 6, 3109-136.	.7	76

414	Microwave detection at 110 Ghz by nanowires with broken symmetry. <i>Nano Letters</i> , 2005 , 5, 1423-7	11.5	76
413	Alignment of InP Stranski K rastanow dots by growth on patterned GaAs/GaInP surfaces. <i>Applied Physics Letters</i> , 1996 , 68, 1684-1686	3.4	76
412	Axonal guidance on patterned free-standing nanowire surfaces. <i>Nanotechnology</i> , 2008 , 19, 345101	3.4	75
411	InAs1-xPx nanowires for device engineering. <i>Nano Letters</i> , 2006 , 6, 403-7	11.5	75
410	Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. <i>Nature Materials</i> , 2004 , 3, 519-23	27	75
409	Room-temperature and 50 GHz operation of a functional nanomaterial. <i>Applied Physics Letters</i> , 2001 , 79, 1357-1359	3.4	75
408	High-performance single nanowire tunnel diodes. <i>Nano Letters</i> , 2010 , 10, 974-9	11.5	73
407	Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography. <i>Nano Letters</i> , 2012 , 12, 1-6	11.5	72
406	In situ growth of nano-structures by metal-organic vapour phase epitaxy. <i>Journal of Crystal Growth</i> , 1997 , 170, 39-46	1.6	69
405	Measurements of the band gap of wurtzite InAs1\(\text{NP} N	2.5	69
404	Absorption of light in InP nanowire arrays. <i>Nano Research</i> , 2014 , 7, 816-823	10	68
403	Epitaxially grown GaP/GaAs1NPx/GaP double heterostructure nanowires for optical applications. <i>Nanotechnology</i> , 2005 , 16, 936-939	3.4	66
402	Excitons bound to nitrogen pairs in GaAs. <i>Physical Review B</i> , 1990 , 42, 7504-7512	3.3	66
401	Observation of strain effects in semiconductor dots depending on cap layer thickness. <i>Applied Physics Letters</i> , 1995 , 67, 1438-1440	3.4	65
400	Direct Evidence for Random-Alloy Splitting of Cu Levels in GaAs1⊠Px. <i>Physical Review Letters</i> , 1984 , 53, 1501-1503	7.4	65
399	Nanowire-based electrode for acute in vivo neural recordings in the brain. <i>PLoS ONE</i> , 2013 , 8, e56673	3.7	64
398	Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. <i>Nanotechnology</i> , 2009 , 20, 07560)33.4	64
397	Thermal conductance of InAs nanowire composites. <i>Nano Letters</i> , 2009 , 9, 4484-8	11.5	64

396	Optimization of Au-assisted InAs nanowires grown by MOVPE. Journal of Crystal Growth, 2006, 297, 32	6-B 8 3	64
395	Reduction of the Schottky barrier height on silicon carbide using Au nano-particles. <i>Solid-State Electronics</i> , 2002 , 46, 1433-1440	1.7	64
394	Spin states of holes in Ge/Si nanowire quantum dots. <i>Physical Review Letters</i> , 2008 , 101, 186802	7.4	63
393	Case study of an InAs quantum dot memory: Optical storing and deletion of charge. <i>Applied Physics Letters</i> , 2001 , 79, 78-80	3.4	63
392	Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires. <i>Nano Letters</i> , 2011 , 11, 2286-90	11.5	62
391	Optical investigations of individual InAs quantum dots: Level splittings of exciton complexes. <i>Physical Review B</i> , 1999 , 60, 16640-16646	3.3	60
390	Lineshape of the thermopower of quantum dots. New Journal of Physics, 2012, 14, 033041	2.9	59
389	Random telegraph noise in photoluminescence from individual self-assembled quantum dots. <i>Physical Review B</i> , 1999 , 59, 10725-10729	3.3	59
388	Transients in the formation of nanowire heterostructures. <i>Nano Letters</i> , 2008 , 8, 3815-8	11.5	57
387	Semiconductor nanowires for novel one-dimensional devices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 21, 560-567	3	57
386	Strain and shape of epitaxial InAs/InP nanowire superlattice measured by grazing incidence X-ray		56
	techniques. <i>Nano Letters</i> , 2007 , 7, 2596-601	11.5	
385	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6	11.5	55
385			55 55
	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6 Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction	11.5	
384	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6 Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. <i>Physical Review B</i> , 2014 , 89, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. <i>Nanotechnology</i> ,	3.3	55
384	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6 Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. <i>Physical Review B</i> , 2014 , 89, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. <i>Nanotechnology</i> , 2002 , 13, 108-113	3.3 3.4	55 55
384 383 382	Confinement in thickness-controlled GaAs polytype nanodots. <i>Nano Letters</i> , 2015 , 15, 2652-6 Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. <i>Physical Review B</i> , 2014 , 89, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. <i>Nanotechnology</i> , 2002 , 13, 108-113 Direct atomic scale imaging of III-V nanowire surfaces. <i>Nano Letters</i> , 2008 , 8, 3978-82 Electrical characterization of InP/GaInP quantum dots by space charge spectroscopy. <i>Journal of</i>	3.3 3.4 11.5	555554

378	Quantized conductance in a heterostructurally defined Ga0.25In0.75As/InP quantum wire. <i>Applied Physics Letters</i> , 1997 , 71, 918-920	3.4	51
377	Band filling at low optical power density in semiconductor dots. <i>Applied Physics Letters</i> , 1995 , 67, 1905-	1 <u>9</u> .Q7	51
376	Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles. <i>Nanotechnology</i> , 2008 , 19, 275712	3.4	50
375	Electrical properties of self-assembled branched InAs nanowire junctions. <i>Nano Letters</i> , 2008 , 8, 1100-4	11.5	50
374	GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. <i>Nano Letters</i> , 2007 , 7, 2859-64	11.5	50
373	Growth mechanisms for GaAs nanowires grown in CBE. <i>Journal of Crystal Growth</i> , 2004 , 272, 167-174	1.6	50
372	A novel frequency-multiplication device based on three-terminal ballistic junction. <i>IEEE Electron Device Letters</i> , 2002 , 23, 377-379	4.4	50
371	A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices. <i>Nano Letters</i> , 2015 , 15, 1809-14	11.5	49
370	Improved size homogeneity of InP-on-GaInP Stranski-Krastanow islands by growth on a thin GaP interface layer. <i>Journal of Crystal Growth</i> , 1995 , 156, 23-29	1.6	49
369	Probing confined phonon modes by transport through a nanowire double quantum dot. <i>Physical Review Letters</i> , 2010 , 104, 036801	7.4	48
368	Shear stress measurements on InAs nanowires by AFM manipulation. <i>Small</i> , 2007 , 3, 1398-401	11	48
367	Single electron pumping in InAs nanowire double quantum dots. <i>Applied Physics Letters</i> , 2007 , 91, 05210	0 9 .4	48
366	Operation of InGaAs/InP-Based Ballistic Rectifiers at Room Temperature and Frequencies up to 50 GHz. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L909-L911	1.4	48
365	Correlation of InGaP(001) surface structure during growth and bulk ordering. <i>Physical Review B</i> , 1999 , 60, 8185-8190	3.3	48
364	Correlation-induced conductance suppression at level degeneracy in a quantum dot. <i>Physical Review Letters</i> , 2010 , 104, 186804	7.4	47
363	Ga0.25In0.75As/InP quantum wells with extremely high and anisotropic two-dimensional electron gas mobilities. <i>Applied Physics Letters</i> , 1996 , 68, 1111-1113	3.4	46
362	Structural investigations of core-shell nanowires using grazing incidence X-ray diffraction. <i>Nano Letters</i> , 2009 , 9, 1877-82	11.5	45
361	In situ characterization of nanowire dimensions and growth dynamics by optical reflectance. <i>Nano Letters</i> , 2015 , 15, 3597-602	11.5	44

(2007-2014)

360	Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning. <i>Nature Communications</i> , 2014 , 5, 3221	17.4	44	
359	A new route toward semiconductor nanospintronics: highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions. <i>Nano Letters</i> , 2011 , 11, 3935-40	11.5	43	
358	Measuring temperature gradients over nanometer length scales. <i>Nano Letters</i> , 2009 , 9, 779-83	11.5	43	
357	Growth of GaP nanotree structures by sequential seeding of 1D nanowires. <i>Journal of Crystal Growth</i> , 2004 , 272, 131-137	1.6	43	
356	A reflection high-energy electron diffraction and atomic force microscopy study of the chemical beam epitaxial growth of InAs and InP islands on (001) GaP. <i>Applied Physics Letters</i> , 1998 , 72, 954-956	3.4	43	
355	Stacking InAs islands and GaAs layers: Strongly modulated one-dimensional electronic systems. <i>Journal of Applied Physics</i> , 1996 , 80, 3360-3364	2.5	43	
354	Alloying mechanisms in MOVPE GaAs1-xPx. Journal of Crystal Growth, 1983, 61, 425-426	1.6	43	
353	. IEEE Transactions on Electron Devices, 2008 , 55, 3037-3041	2.9	42	
352	A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire. <i>Nano Letters</i> , 2008 , 8, 872-5	11.5	42	
351	Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. <i>Small</i> , 2009 , 5, 203-7	11	42	
350	Electron accumulation in single InP quantum dots observed by photoluminescence. <i>Physical Review B</i> , 2001 , 64,	3.3	42	
349	Particle-assisted Ga(x)In(1-x)P nanowire growth for designed bandgap structures. <i>Nanotechnology</i> , 2012 , 23, 245601	3.4	41	
348	Rectifying and sorting of regenerating axons by free-standing nanowire patterns: a highway for nerve fibers. <i>Langmuir</i> , 2009 , 25, 4343-6	4	41	
347	Symmetry of two-terminal nonlinear electric conduction. <i>Physical Review Letters</i> , 2004 , 92, 046803	7·4	41	
346	Antisite-related defects in plastically deformed GaAs. <i>Physical Review B</i> , 1986 , 33, 5880-5883	3.3	41	
345	Optical transitions via the deep O donor in GaP. II. Temperature dependence of cross sections. <i>Physical Review B</i> , 1978 , 18, 830-843	3.3	41	
344	Nanowire biocompatibility in the brainlooking for a needle in a 3D stack. <i>Nano Letters</i> , 2009 , 9, 4184-9	011.5	40	
343	Understanding the 3D structure of mathrm {GaAslangle 111rangle B} nanowires. <i>Nanotechnology</i> , 2007 , 18, 485717	3.4	39	

342	Contact mode atomic force microscopy imaging of nanometer-sized particles. <i>Applied Physics Letters</i> , 1995 , 66, 3295-3297	3.4	39
341	Fluorescent nanowire heterostructures as a versatile tool for biology applications. <i>Nano Letters</i> , 2013 , 13, 4728-32	11.5	38
340	Hopping conduction in Mn ion-implanted GaAs nanowires. <i>Nano Letters</i> , 2012 , 12, 4838-42	11.5	38
339	Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy. <i>Nano Research</i> , 2011 , 4, 159-163	10	38
338	Directed Growth of Branched Nanowire Structures. MRS Bulletin, 2007, 32, 127-133	3.2	38
337	Nanowire-based multiple quantum dot memory. <i>Applied Physics Letters</i> , 2006 , 89, 163101	3.4	38
336	Metastable state of EL2 in the GaAs1⊠Px alloy system. <i>Physical Review B</i> , 1984 , 29, 4534-4539	3.3	38
335	Towards Nanowire Tandem Junction Solar Cells on Silicon. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 733-74	1 9 .7	37
334	Growth and segregation of GaAsAlxIn1⊠P core-shell nanowires. <i>Journal of Crystal Growth</i> , 2010 , 312, 1755-1760	1.6	37
333	Three-photon cascade from single self-assembled InP quantum dots. <i>Physical Review B</i> , 2004 , 69,	3.3	37
332	Growth and characterization of strained layers of GaAsxP1⊠. <i>Journal of Crystal Growth</i> , 1988 , 93, 504-51	11.6	37
331	Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study. <i>Journal of Crystal Growth</i> , 2011 , 334, 51-56	1.6	36
330	High peak-to-valley ratios observed in InAs/InP resonant tunneling quantum dot stacks. <i>Applied Physics Letters</i> , 2001 , 78, 3232-3234	3.4	36
329	Electrical and optical properties of self-assembled InAs quantum dots in InP studied by space-charge spectroscopy and photoluminescence. <i>Physical Review B</i> , 2000 , 61, 4795-4800	3.3	36
328	Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. <i>Nano Research</i> , 2014 , 7, 544-552	10	35
327	Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires. <i>ACS Nano</i> , 2012 , 6, 9679-89	16.7	35
326	Control of GaP and GaAs nanowire morphology through particle and substrate chemical modification. <i>Nano Letters</i> , 2008 , 8, 4087-91	11.5	35
325	Optical and theoretical investigations of small InP quantum dots in GaxIn1⊠P. <i>Physical Review B</i> , 2003 , 67,	3.3	35

324	X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire. ACS Nano, 2017, 11, 6605-6611	16.7	34
323	Study of carrier concentration in single InP nanowires by luminescence and Hall measurements. <i>Nanotechnology</i> , 2015 , 26, 045705	3.4	34
322	Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence. <i>Applied Physics Letters</i> , 2015 , 107, 251106	3.4	34
321	Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate. <i>Advanced Materials</i> , 2009 , 21, 3654-3658	24	34
320	Reversible transition between InGaAs dot structure and InGaAsP flat surface. <i>Applied Physics Letters</i> , 1997 , 71, 797-799	3.4	34
319	Formation of interface layers in GaxIn1NAs/InP heterostructures: A re-evaluation using ultrathin quantum wells as a probe. <i>Journal of Applied Physics</i> , 1994 , 75, 1501-1510	2.5	34
318	Vertical oxide nanotubes connected by subsurface microchannels. <i>Nano Research</i> , 2012 , 5, 190-198	10	33
317	The fabrication of dense and uniform InAs nanowire arrays. <i>Nanotechnology</i> , 2009 , 20, 225304	3.4	33
316	Nanometer-scale two-terminal semiconductor memory operating at room temperature. <i>Applied Physics Letters</i> , 2005 , 86, 042106	3.4	33
315	Single-monolayer quantum wells of GaInAs in InP grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 56, 1128-1130	3.4	33
314	Gallium phosphide nanowire arrays and their possible application in cellular force investigations. Journal of Vacuum Science & Technology B, 2009 , 27, 3092		32
313			
	InAs nanowires grown by MOVPE. <i>Journal of Crystal Growth</i> , 2007 , 298, 631-634	1.6	32
312	InAs nanowires grown by MOVPE. <i>Journal of Crystal Growth</i> , 2007 , 298, 631-634 Improving InAs nanotree growth with composition-controlled AuIn nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 1344-1350	1.6 3·4	32
	Improving InAs nanotree growth with composition-controlled Aulh nanoparticles. <i>Nanotechnology</i> ,		
312	Improving InAs nanotree growth with composition-controlled AuIh nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 1344-1350 Optical detection of growth oscillations in high vacuum metalorganic vapor phase epitaxy. <i>Applied</i>	3.4	32
312	Improving InAs nanotree growth with composition-controlled AuIh nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 1344-1350 Optical detection of growth oscillations in high vacuum metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 56, 2414-2416 Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System. <i>Nano Letters</i> ,	3.4	32
312 311 310	Improving InAs nanotree growth with composition-controlled AuIh nanoparticles. <i>Nanotechnology</i> , 2006 , 17, 1344-1350 Optical detection of growth oscillations in high vacuum metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 56, 2414-2416 Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System. <i>Nano Letters</i> , 2016 , 16, 656-62 Determination of diffusion lengths in nanowires using cathodoluminescence. <i>Applied Physics</i>	3.4 3.4 11.5	32 32 31

306	A new method to fabricate size-selected compound semiconductor nanocrystals: aerotaxy. <i>Journal of Crystal Growth</i> , 1996 , 169, 13-19	1.6	31
305	Properties of thin strained layers of GaAs grown on InP. <i>Physical Review B</i> , 1992 , 45, 3628-3635	3.3	31
304	Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire. <i>Nano Letters</i> , 2016 , 16, 205-11	11.5	31
303	Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching. <i>Journal of Crystal Growth</i> , 2014 , 386, 47-51	1.6	30
302	GaAs/AlGaAs heterostructure nanowires studied by cathodoluminescence. <i>Nano Research</i> , 2014 , 7, 473-	-490	30
301	Electrical and optical properties of InP nanowire ensemble p+-i-n+ photodetectors. <i>Nanotechnology</i> , 2012 , 23, 135201	3.4	30
300	InSb Nanowire Field-Effect Transistors and Quantum-Dot Devices. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 907-914	3.8	30
299	Quantum-confinement effects in InAs-InP core-shell nanowires. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 295219	1.8	30
298	Stark effect in individual luminescent centers observed by tunneling luminescence. <i>Applied Physics Letters</i> , 1996 , 68, 60-62	3.4	30
297	Nanometer patterning of InP using aerosol and plasma etching techniques. <i>Applied Physics Letters</i> , 1992 , 61, 837-839	3.4	30
296	Identification of a second energy level of EL2 in n-type GaAs. <i>Physical Review B</i> , 1988 , 38, 3606-3609	3.3	30
295	GaAsP Nanowires Grown by Aerotaxy. <i>Nano Letters</i> , 2016 , 16, 5701-7	11.5	29
294	Electrical properties of GaSb/InAsSb core/shell nanowires. <i>Nanotechnology</i> , 2014 , 25, 425201	3.4	29
293	InAs quantum dots and quantum wells grown on stacking-fault controlled InP nanowires with wurtzite crystal structure. <i>Applied Physics Letters</i> , 2011 , 99, 131915	3.4	29
292	Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. <i>Nano Letters</i> , 2017 , 17, 3356-3362	11.5	28
291	Synthesis of doped InP core-shell nanowires evaluated using hall effect measurements. <i>Nano Letters</i> , 2014 , 14, 749-53	11.5	28
290	Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. <i>Applied Physics Letters</i> , 2008 , 92, 093110	3.4	28
289	The structure of <1 1 1>B oriented GaP nanowires. <i>Journal of Crystal Growth</i> , 2007 , 298, 635-639	1.6	28

(1991-2015)

2	288	Structural Properties of wurtzite InP-InGaAs nanowire core-shell heterostructures. <i>Nano Letters</i> , 2015 , 15, 2462-7	11.5	27	
2	287	InAs Nanowire Transistors with Multiple, Independent Wrap-Gate Segments. <i>Nano Letters</i> , 2015 , 15, 2836-43	11.5	27	
2	286	Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. <i>Nano Letters</i> , 2018 , 18, 365-372	11.5	27	
2	285	Growth of doped InAsyP1 nanowires with InP shells. <i>Journal of Crystal Growth</i> , 2011 , 331, 8-14	1.6	27	
2	284	Degenerate p-doping of InP nanowires for large area tunnel diodes. <i>Applied Physics Letters</i> , 2011 , 99, 253105	3.4	27	
2	283	Probing of individual semiconductor nanowhiskers by TEM-STM. <i>Microscopy and Microanalysis</i> , 2004 , 10, 41-6	0.5	27	
2	282	Electrical and optical properties of GaP grown on Si by MOVPE. <i>Journal of Crystal Growth</i> , 1984 , 68, 340	-3.464	27	
2	281	Nanowire-Based Visible Light Emitters, Present Status and Outlook. <i>Semiconductors and Semimetals</i> , 2016 , 94, 227-271	0.6	27	
2	280	Signatures of Wigner localization in epitaxially grown nanowires. <i>Physical Review B</i> , 2011 , 83,	3.3	26	
2	2 79	Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Small, 2008 , 4, 1741-6	11	26	
2	278	High frequency characterization of a GaInAs/InP electronic waveguide T-branch switch. <i>Journal of Applied Physics</i> , 2002 , 91, 2398-2402	2.5	26	
2	2 77	Photon mapping of quantum dots using a scanning tunneling microscope. <i>Applied Physics Letters</i> , 2002 , 81, 4443-4445	3.4	26	
2	276	Cathodoluminescence spectroscopy and imaging of individual GaN dots. <i>Applied Physics Letters</i> , 1999 , 74, 3513-3515	3.4	26	
2	2 75	Single-electron devices via controlled assembly of designed nanoparticles. <i>Microelectronic Engineering</i> , 1999 , 47, 179-183	2.5	26	
2	274	Sintered aerosol masks for dry-etched quantum dots. <i>Applied Physics Letters</i> , 1994 , 64, 3293-3295	3.4	26	
2	2 73	Analysing the capacitance-voltage measurements of vertical wrapped-gated nanowires. <i>Nanotechnology</i> , 2008 , 19, 435201	3.4	25	
2	272	Designed emitter states in resonant tunneling through quantum dots. <i>Applied Physics Letters</i> , 2002 , 80, 2681-2683	3.4	25	
2	271	Reflectance-difference study of surface chemistry in MOVPE growth. <i>Journal of Crystal Growth</i> , 1991 , 107, 68-72	1.6	25	

270	On the formation of the SbGa heteroantisite in metalorganic vapor-phase epitaxial GaAs:Sb. <i>Applied Physics Letters</i> , 1991 , 59, 1323-1325	3.4	25
269	InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. <i>Nano Letters</i> , 2019 , 19, 2832-2839	11.5	24
268	Magnetic polarons and large negative magnetoresistance in GaAs nanowires implanted with Mn ions. <i>Nano Letters</i> , 2013 , 13, 5079-84	11.5	24
267	Tunable nonlinear currentWoltage characteristics of three-terminal ballistic nanojunctions. <i>Applied Physics Letters</i> , 2003 , 83, 2369-2371	3.4	24
266	Electronic structure of self-assembled InAs quantum dots in InP: An anisotropic quantum-dot system. <i>Physical Review B</i> , 1999 , 60, R11289-R11292	3.3	24
265	Properties of thin strained Ga(As,P) layers. <i>Physical Review B</i> , 1988 , 37, 4664-4670	3.3	24
264	Fast Strain Mapping of Nanowire Light-Emitting Diodes Using Nanofocused X-ray Beams. <i>ACS Nano</i> , 2015 , 9, 6978-84	16.7	23
263	Zn-doping of GaAs nanowires grown by Aerotaxy. <i>Journal of Crystal Growth</i> , 2015 , 414, 181-186	1.6	23
262	Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence. <i>Journal of Crystal Growth</i> , 2011 , 315, 138-142	1.6	23
261	Heterostructure Barriers in Wrap Gated Nanowire FETs. <i>IEEE Electron Device Letters</i> , 2008 , 29, 981-983	4.4	23
260	Unified model of fractal conductance fluctuations for diffusive and ballistic semiconductor devices. <i>Physical Review B</i> , 2006 , 73,	3.3	23
259	Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors. <i>Nano Letters</i> , 2014 , 14, 94-100	11.5	22
258	Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays. <i>Nano Letters</i> , 2014 , 14, 565	0-5 .5	22
257	Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 394003	3	22
256	Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L1628-L1631	1.4	22
255	Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts. <i>Applied Physics Letters</i> , 2008 , 93, 012105	3.4	22
254	On the growth of gallium phosphide layers on gallium phosphide substrates by MOVPE. <i>Journal of Electronic Materials</i> , 1989 , 18, 25-31	1.9	22
253	Properties of the EL2 level in GaAs1-xPx. <i>Physical Review B</i> , 1986 , 34, 5603-5609	3.3	22

252	III-V nanowire synthesis by use of electrodeposited gold particles. <i>Nano Letters</i> , 2015 , 15, 134-8	11.5	21
251	Transport studies of electron-hole and spin-orbit interaction in GaSb/InAsSb core-shell nanowire quantum dots. <i>Physical Review B</i> , 2015 , 91,	3.3	21
250	Bulk-like transverse electron mobility in an array of heavily n-doped InP nanowires probed by terahertz spectroscopy. <i>Physical Review B</i> , 2014 , 90,	3.3	21
249	Detection of charge states in nanowire quantum dots using a quantum point contact. <i>Applied Physics Letters</i> , 2007 , 90, 172112	3.4	21
248	Transport through an isolated artificial molecule formed from stacked self-assembled quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 2655-2657	3.4	21
247	A comparison of RHEED reconstruction phases on (100) InAs, GaAs and InP. <i>Journal of Crystal Growth</i> , 1996 , 164, 66-70	1.6	21
246	Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam. <i>Applied Physics Letters</i> , 2015 , 107, 103101	3.4	20
245	Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography. <i>Small</i> , 2015 , 11, 2687-95	11	20
244	Photoluminescence polarization of single InP quantum dots. <i>Physical Review B</i> , 2001 , 63,	3.3	20
243	Single InP/GaInP quantum dots studied by scanning tunneling microscopy and scanning tunneling microscopy induced luminescence. <i>Applied Physics Letters</i> , 2002 , 80, 494-496	3.4	20
242	Quantum transport in high mobility modulation doped Ga0.25In0.75As/InP quantum wells. <i>Journal of Applied Physics</i> , 1998 , 84, 2112-2122	2.5	20
241	Cathodoluminescence investigations of three-dimensional island formation in InAsInP quantum wells. <i>Journal of Crystal Growth</i> , 1995 , 147, 27-34	1.6	20
240	Nano-Optical Studies of Individual Nanostructures. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4392-	4 3.9 ₁ 7	20
239	Influence of arsenic adsorption layers on heterointerfaces in GaInAs/InP quantum well structures. <i>Applied Physics Letters</i> , 1993 , 62, 949-951	3.4	20
238	Novel reactor design for large area uniformity of abrupt heterojunction structures. <i>Journal of Crystal Growth</i> , 1986 , 77, 67-72	1.6	20
237	Properties of deep Cu levels in GaP. Solid-State Electronics, 1978, 21, 1505-1508	1.7	20
236	High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds. <i>Journal of Applied Physics</i> , 2018 , 123, 025102	2.5	19
235	Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation. <i>Nano Letters</i> , 2016 , 16, 2774-80	11.5	19

234	Tunable absorption resonances in the ultraviolet for InP nanowire arrays. <i>Optics Express</i> , 2014 , 22, 2920	043.32	19
233	Locating nanowire heterostructures by electron beam induced current. <i>Nanotechnology</i> , 2007 , 18, 2053	30;64	19
232	Fabrication, optical characterization and modeling of strained corellhell nanowires. <i>Thin Solid Films</i> , 2006 , 515, 793-796	2.2	19
231	Correlation spectroscopy of excitons and biexcitons on a single quantum dot. <i>Physical Review A</i> , 2002 , 66,	2.6	19
230	Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals. <i>Applied Physics Letters</i> , 1996 , 68, 1409-1411	3.4	19
229	Characterization of the Mn acceptor level in GaAs. <i>Journal of Applied Physics</i> , 1988 , 64, 1564-1567	2.5	19
228	InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors. <i>ACS Photonics</i> , 2017 , 4, 2693-2698	6.3	18
227	Measurement of strain in InGaN/GaN nanowires and nanopyramids. <i>Journal of Applied Crystallography</i> , 2015 , 48, 344-349	3.8	18
226	Semiconductor nanostructures enabled by aerosol technology. Frontiers of Physics, 2014, 9, 398-418	3.7	18
225	Lateral current-constriction in vertical devices using openings in buried lattices of metallic discs. <i>Applied Physics Letters</i> , 1997 , 71, 2803-2805	3.4	18
224	Electron beam prepatterning for site control of self-assembled quantum dots. <i>Applied Physics Letters</i> , 2001 , 78, 1367-1369	3.4	18
223	Extended, monolayer flat islands and exciton dynamics in Ga0.47In0.53As/InP quantum-well structures. <i>Physical Review B</i> , 1993 , 47, 2203-2215	3.3	18
222	Reflectance-difference probing of surface kinetics of (001) GaAs during vacuum chemical epitaxy. Journal of Crystal Growth, 1991 , 111, 115-119	1.6	18
221	Nanofluidics in hollow nanowires. <i>Nanotechnology</i> , 2010 , 21, 155301	3.4	18
220	Radiation Tolerant Nanowire Array Solar Cells. ACS Nano, 2019, 13, 12860-12869	16.7	17
219	Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires. <i>Nanotechnology</i> , 2011 , 22, 185201	3.4	17
218	Nanowire Field-Effect Transistor. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 2629-2631	1.4	17
217	Conductance oscillations induced by longitudinal resonant states in heteroepitaxially defined Ga0.25In0.75As/InP electron waveguides. <i>Applied Physics Letters</i> , 2000 , 76, 2274-2276	3.4	17

216	Mechanical tuning of tunnel gaps for the assembly of single-electron transistors. <i>Applied Physics Letters</i> , 1999 , 75, 1461-1463	3.4	17	
215	Planarization of epitaxial GaAs overgrowth over tungsten wires. <i>Journal of Applied Physics</i> , 1996 , 79, 500-503	2.5	17	
214	Cathodoluminescence observation of extended monolayer-flat terraces at the heterointerface of GaInAs/InP single quantum wells grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1990 , 57, 878-880	3.4	17	
213	Optical and thermal properties of Fe in GaP. Solid State Communications, 1983, 48, 427-430	1.6	17	
212	. IEEE Journal of Photovoltaics, 2016 , 6, 1502-1508	3.7	17	
211	Realization of Ultrahigh Quality InGaN Platelets to be Used as Relaxed Templates for Red Micro-LEDs. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 17845-17851	9.5	16	
210	Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. <i>Nano Research</i> , 2014 , 7, 1188-1194	10	16	
209	Current-voltage characterization of individual as-grown nanowires using a scanning tunneling microscope. <i>Nano Letters</i> , 2013 , 13, 5182-9	11.5	16	
208	Gate-induced fermi level tuning in InP nanowires at efficiency close to the thermal limit. <i>Nano Letters</i> , 2011 , 11, 1127-30	11.5	16	
207	Microphotoluminescence studies of tunable wurtzite InAs0.85P0.15 quantum dots embedded in wurtzite InP nanowires. <i>Physical Review B</i> , 2009 , 80,	3.3	16	
206	Growth of vertical InAs nanowires on heterostructured substrates. <i>Nanotechnology</i> , 2009 , 20, 285303	3.4	16	
205	Size-selected nanocrystals of IIIIV semiconductor materials by the aerotaxy method. <i>Journal of Aerosol Science</i> , 1998 , 29, 737-748	4.3	16	
204	Strain effects on individual quantum dots: Dependence of cap layer thickness. <i>Physical Review B</i> , 2005 , 72,	3.3	16	
203	Hole ionization of Mn-doped GaAs: Photoluminescence versus space-charge techniques. <i>Physical Review B</i> , 1989 , 40, 5598-5601	3.3	16	
202	Disorder-induced Anderson localization in GaAs1NPx. Solid State Communications, 1984, 52, 789-792	1.6	16	
201	Doping profile of InP nanowires directly imaged by photoemission electron microscopy. <i>Applied Physics Letters</i> , 2011 , 99, 233113	3.4	15	
200	Thermal resistance of a nanoscale point contact to an indium arsenide nanowire. <i>Applied Physics Letters</i> , 2011 , 99, 063110	3.4	15	
199	Size reduction of self assembled quantum dots by annealing. <i>Applied Surface Science</i> , 1998 , 134, 47-52	6.7	15	

198	Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions. <i>Nano Letters</i> , 2008 , 8, 848-52	11.5	15
197	Quantum-dot thermometry. Applied Physics Letters, 2007, 91, 252114	3.4	15
196	Optical investigation of InAs/InP quantum dots at different temperatures and under electric field. <i>Thin Solid Films</i> , 2000 , 364, 161-164	2.2	15
195	Imaging and spectroscopic studies of individual impurities in quantum structures. <i>Physical Review Letters</i> , 1995 , 74, 2395-2398	7.4	15
194	Donor states in GaAs under hydrostatic pressure. <i>Physical Review B</i> , 1990 , 42, 11791-11800	3.3	15
193	Evidence that the 0.635-eV luminescence band in semi-insulating GaAs is not EL2 related. <i>Applied Physics Letters</i> , 1984 , 45, 521-523	3.4	15
192	Conductance enhancement of InAs/InP heterostructure nanowires by surface functionalization with oligo(phenylene vinylene)s. <i>ACS Nano</i> , 2013 , 7, 4111-8	16.7	14
191	Landau level formation in semiconductor quantum dots in a high magnetic field. <i>Applied Physics Letters</i> , 1997 , 71, 2316-2318	3.4	14
190	Fabrication and time-resolved studies of visible microdisk lasers. <i>Journal of Applied Physics</i> , 2003 , 93, 2307-2309	2.5	14
189	Optical characterization of quantum wires and quantum dots. <i>Physica Status Solidi A</i> , 1995 , 152, 269-280)	14
189		1.7	14
	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling		
188	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling	1.7	14
188	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. <i>Ultramicroscopy</i> , 1992 , 42-44, 210-214 Mechanism for spatial separation of charge carriers in inhomogeneous semiconductor alloys. <i>Physical Review B</i> , 1986 , 33, 8776-8778 Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. <i>Nano</i>	1.7 3.1 3.3	14
188 187 186	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. <i>Ultramicroscopy</i> , 1992 , 42-44, 210-214 Mechanism for spatial separation of charge carriers in inhomogeneous semiconductor alloys. <i>Physical Review B</i> , 1986 , 33, 8776-8778 Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. <i>Nano Letters</i> , 2017 , 17, 3599-3606	3.1 3.3	14 14
188 187 186	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. <i>Ultramicroscopy</i> , 1992 , 42-44, 210-214 Mechanism for spatial separation of charge carriers in inhomogeneous semiconductor alloys. <i>Physical Review B</i> , 1986 , 33, 8776-8778 Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. <i>Nano Letters</i> , 2017 , 17, 3599-3606 n-type doping and morphology of GaAs nanowires in Aerotaxy. <i>Nanotechnology</i> , 2018 , 29, 285601	3.1 3.3 11.5	14 14 14
188 187 186 185	Assembling strained InAs islands by chemical beam epitaxy. <i>Solid-State Electronics</i> , 1996 , 40, 609-614 Low-temperature luminescence due to minority carrier injection from the scanning tunneling microscope tip. <i>Ultramicroscopy</i> , 1992 , 42-44, 210-214 Mechanism for spatial separation of charge carriers in inhomogeneous semiconductor alloys. <i>Physical Review B</i> , 1986 , 33, 8776-8778 Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. <i>Nano Letters</i> , 2017 , 17, 3599-3606 n-type doping and morphology of GaAs nanowires in Aerotaxy. <i>Nanotechnology</i> , 2018 , 29, 285601 Microarray analysis reveals moderate gene expression changes in cortical neural stem cells cultured on nanowire arrays. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 4880-5	1.7 3.1 3.3 11.5	14 14 14 13

(2012-2010)

180	Time-resolved photoluminescence investigations on HfO2-capped InP nanowires. <i>Nanotechnology</i> , 2010 , 21, 105711	3.4	13	
179	Drive current and threshold voltage control in vertical InAs wrap-gate transistors. <i>Electronics Letters</i> , 2008 , 44, 236	1.1	13	
178	Confinement properties of a Ga0.25In0.75AsIhP quantum point contact. <i>Physical Review B</i> , 2008 , 77,	3.3	13	
177	Effects of growth conditions on the crystal structure of gold-seeded GaP nanowires. <i>Journal of Crystal Growth</i> , 2008 , 310, 5102-5105	1.6	13	
176	Height-controlled nanowire branches on nanotrees using a polymer mask. <i>Nanotechnology</i> , 2007 , 18, 035601	3.4	13	
175	Single-electron tunneling effects in a metallic double dot device. <i>Applied Physics Letters</i> , 2002 , 80, 667-	6 6 9 ₄	13	
174	MOVPE overgrowth of metallic features for realisation of 3D metallemiconductor quantum devices. <i>Journal of Crystal Growth</i> , 2000 , 221, 704-712	1.6	13	
173	Effects of charged self-assembled quantum dots on two-dimensional quantum transport. <i>Applied Physics Letters</i> , 2000 , 76, 1704-1706	3.4	13	
172	Lateral confinement in a resonant tunneling transistor with a buried metallic gate. <i>Applied Physics Letters</i> , 1999 , 74, 311-313	3.4	13	
171	Optical response of reconstructed GaP(001) surfaces. <i>Physical Review B</i> , 1999 , 60, 11557-11563	3.3	13	
170	Reflectance difference for in situ control of surface V/III ratio during epitaxial growth of GaAs. <i>Journal of Applied Physics</i> , 1991 , 70, 1737-1741	2.5	13	
169	Direct type IIIndirect type I conversion of InP/GaAs/InP strained quantum wells induced by hydrostatic pressure. <i>Applied Physics Letters</i> , 1991 , 59, 806-808	3.4	13	
168	Optical detection of growth oscillations from high vacuum up to low-pressure metalorganic vapor phase epitaxy like conditions. <i>Applied Physics Letters</i> , 1992 , 61, 1558-1560	3.4	13	
167	Dominant nonlocal superconducting proximity effect due to electron-electron interaction in a ballistic double nanowire. <i>Science Advances</i> , 2019 , 5, eaaw2194	14.3	12	
166	Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles. <i>Nanotechnology</i> , 2013 , 24, 115706	3.4	12	
165	Integration, gap formation, and sharpening of III-V heterostructure nanowires by selective etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 21-26	1.3	12	
164	Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	12	
163	Single GaInP nanowire p-i-n junctions near the direct to indirect bandgap crossover point. <i>Applied Physics Letters</i> , 2012 , 100, 251103	3.4	12	

162	Spectroscopy, Imaging and Switching Behaviour of Individual InP/GaInP Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4188-4190	1.4	12
161	Stacked InAs quantum dots in InP studied by cross-sectional scanning tunnelling microscopy. <i>Nanotechnology</i> , 2004 , 15, 1701-1707	3.4	12
160	Nanoimprint lithography for fabrication of three-terminal ballistic junctions in InP/GaInAs. <i>Nanotechnology</i> , 2002 , 13, 666-668	3.4	12
159	Reevaluation of bandgap and free exciton binding energy of GaP. <i>Solid State Communications</i> , 1978 , 26, 165-167	1.6	12
158	Temperature dependent electronic band structure of wurtzite GaAs nanowires. <i>Nanoscale</i> , 2018 , 10, 1481-1486	7.7	11
157	Self-Seeded Axio-Radial InAs-InAsP Nanowire Heterostructures beyond "Common" VLS Growth. <i>Nano Letters</i> , 2018 , 18, 144-151	11.5	11
156	Reflection measurements to reveal the absorption in nanowire arrays. <i>Optics Letters</i> , 2013 , 38, 1449-51	3	11
155	Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires. <i>Nanotechnology</i> , 2013 , 24, 225203	3.4	11
154	Dynamics of extremely anisotropic etching of InP nanowires by HCl. <i>Chemical Physics Letters</i> , 2011 , 502, 222-224	2.5	11
153	X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 131911	3.4	11
152	InAs quantum dots in GaAs holes: island number dependence on hole diameter and conduction-band coupling estimates. <i>Superlattices and Microstructures</i> , 1998 , 23, 1347-1352	2.8	11
151	Probing spin accumulation in Ni/Au/Ni single-electron transistors with efficient spin injection and detection electrodes. <i>Nano Letters</i> , 2007 , 7, 81-5	11.5	11
150	GaAs Metalorganic Vapour Phase Epitaxial Overgrowth over nm-Sized Tungsten Wires. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4414-4416	1.4	11
149	Cathodoluminescence imaging of quantum wells: The influence of exciton transfer on the apparent island size. <i>Physical Review B</i> , 1994 , 50, 11827-11832	3.3	11
148	Metalorganic vapour phase epitaxy grown quantum-well structures within barriers of InP and GaInP - a comparison. <i>Journal of Crystal Growth</i> , 1994 , 145, 758-763	1.6	11
147	Analysis of growth conditions for the deposition of monolayers of GaInAs, GaAs and InAs in InP by LP-MOVPE. <i>Journal of Crystal Growth</i> , 1992 , 124, 531-535	1.6	11
146	Effects of stoichiometry on deep levels in MOVPE GaP. <i>Semiconductor Science and Technology</i> , 1988 , 3, 488-493	1.8	11
145	Nanowire Solar Cells: A New Radiation Hard PV Technology for Space Applications. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 502-507	3.7	10

144	Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices. <i>Nano Letters</i> , 2020 , 20, 4064-40	72 1.5	10
143	Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires. <i>Nanotechnology</i> , 2016 , 27, 4557	0,44	10
142	Comparative friction measurements of InAs nanowires on three substrates. <i>Journal of Applied Physics</i> , 2010 , 108, 094307	2.5	10
141	Operation of a ballistic heterojunction permeable base transistor. <i>IEEE Transactions on Electron Devices</i> , 1997 , 44, 1829-1836	2.9	10
140	Luminescence polarization of ordered GaInP/InP islands. <i>Applied Physics Letters</i> , 2003 , 82, 627-629	3.4	10
139	Kinetics of electron charging and discharging on embedded W disks in GaAs. <i>Physical Review B</i> , 1998 , 58, R4207-R4210	3.3	10
138	Cathodoluminescence of single quantum wires and vertical quantum wells grown on a submicron grating. <i>Applied Physics Letters</i> , 1994 , 64, 695-697	3.4	10
137	Dislocations in mismatched layers of GaAsxP1\(\bar{\text{u}} \) in between GaP as observed by low-temperature cathodoluminescence: Part I. Grown on (001) oriented substrates <i>Journal of Applied Physics</i> , 1991 , 70, 1660-1666	2.5	10
136	Effects of alloying and hydrostatic pressure on the luminescence of Mn in GaAs. <i>Journal of Luminescence</i> , 1988 , 40-41, 127-128	3.8	10
135	Bias-dependent spectral tuning in InP nanowire-based photodetectors. <i>Nanotechnology</i> , 2017 , 28, 1140	0564	9
134	Self-assembled InN quantum dots on side facets of GaN nanowires. <i>Journal of Applied Physics</i> , 2018 , 123, 164302	2.5	9
133	Structural Changes in a Single GaN Nanowire under Applied Voltage Bias. <i>Nano Letters</i> , 2018 , 18, 5446-5	5 45 2	9
132	Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors. <i>Nano Letters</i> , 2018 , 18, 4431-4439	11.5	9
131	Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-5	3.5	9
130	Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications. <i>Nanotechnology</i> , 2010 , 21, 055102	3.4	9
129	High-speed nanometer-scale imaging for studies of nanowire mechanics. <i>Small</i> , 2007 , 3, 1699-702	11	9
128	CRYSTAL STRUCTURE OF BRANCHED EPITAXIAL IIIN NANOTREES. Nano, 2006, 01, 139-151	1.1	9
127	Intersubband photoconductivity of self-assembled InAs quantum dots embedded in InP. <i>Journal of Applied Physics</i> , 2004 , 95, 1829-1831	2.5	9

126	Correlation between overgrowth morphology and optical properties of single self-assembled InP quantum dots. <i>Physical Review B</i> , 2003 , 68,	3.3	9
125	Quantum-dot-induced ordering in GaxIn1NP/InP islands. <i>Physical Review B</i> , 2002 , 66,	3.3	9
124	Anti-domain-free GaP, grown in atomically flat (001) Si sub-fin-sized openings. <i>Applied Physics Letters</i> , 2002 , 80, 4546-4548	3.4	9
123	MOVPE growth and characterization of strained layers. <i>Journal of Crystal Growth</i> , 1991 , 107, 458-467	1.6	9
122	Real-time monolayer growth oscillations detected by RD at pressures up to LP-MOVPE. <i>Journal of Crystal Growth</i> , 1992 , 124, 30-36	1.6	9
121	High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating. <i>Nano Letters</i> , 2019 , 19, 8424-8430	11.5	9
120	Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 153112	3.4	8
119	Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments. <i>Nanotechnology</i> , 2014 , 25, 465306	3.4	8
118	Charge pumping in InAs nanowires by surface acoustic waves. <i>Semiconductor Science and Technology</i> , 2010 , 25, 024013	1.8	8
117	New flexible toolbox for nanomechanical measurements with extreme precision and at very high frequencies. <i>Nano Letters</i> , 2010 , 10, 3893-8	11.5	8
116	Interband transitions in InAs quantum dots in InP studied by photoconductivity and photoluminescence techniques. <i>Journal of Applied Physics</i> , 2004 , 95, 8007-8010	2.5	8
115	Optically induced charge storage and current generation in InAs quantum dots. <i>Physical Review B</i> , 2002 , 65,	3.3	8
114	Electronic properties of the SbGa heteroantisite defect in GaAs:Sb. <i>Physical Review B</i> , 1991 , 44, 13398-1	3,4,03	8
113	CBE growth of (001) GaAs: RHEED and RD studies. <i>Journal of Crystal Growth</i> , 1992 , 124, 23-29	1.6	8
112	Dislocation-Free and Atomically Flat GaN Hexagonal Microprisms for Device Applications. <i>Small</i> , 2020 , 16, e1907364	11	7
111	Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs1-xPx Nanowires. <i>Nano Letters</i> , 2016 , 16, 1017-21	11.5	7
110	Revealing misfit dislocations in InAs P -InP core-shell nanowires by x-ray diffraction. <i>Nanotechnology</i> , 2019 , 30, 505703	3.4	7
109	Semiconductor-oxide heterostructured nanowires using postgrowth oxidation. <i>Nano Letters</i> , 2013 , 13, 5961-6	11.5	7

108	Nanofocused x-ray beams applied for mapping strain in core-shell nanowires 2015,		7
107	MOVPE growth of InPGaInAs and GaAsGaInP heterostructures for electronic transport applications. <i>Journal of Crystal Growth</i> , 1997 , 170, 127-131	1.6	7
106	Core-shell InP-CdS nanowires: fabrication and study. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 29	5211.8	7
105	Assembling ferromagnetic single-electron transistors by atomic force microscopy. <i>Nanotechnology</i> , 2007 , 18, 055302	3.4	7
104	A novel device principle for nanoelectronics. <i>Materials Science and Engineering C</i> , 2002 , 19, 417-420	8.3	7
103	Spontaneous InAs quantum dot nucleation at strained InP/GaInAs interfaces. <i>Applied Physics Letters</i> , 2003 , 83, 4830-4832	3.4	7
102	Epitaxially overgrown, stable WCaAs Schottky contacts with sizes down to 50 nm. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 580		7
101	Reevaluation of blueshifts introduced by lateral confinement in quantum-well wire structures. <i>Applied Physics Letters</i> , 1993 , 62, 1709-1711	3.4	7
100	Direct observation of growth rate transients during homoepitaxy of GaAs. <i>Thin Solid Films</i> , 1993 , 224, 133-136	2.2	7
99	Copper deep acceptors in GaAs1-xPxalloy system. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 10	17-102	4 7
99 98	Copper deep acceptors in GaAs1-xPxalloy system. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 10 Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113		6
			,
98	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113 Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica</i>	5031.4	6
98 97	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113 Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1532-1534 Fabrication and characterization of AlP-GaP core-shell nanowires. <i>Journal of Crystal Growth</i> , 2011 ,	50 <u>3</u> 1.4 1.6	6
98 97 96	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113 Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1532-1534 Fabrication and characterization of AlP-GaP core-shell nanowires. <i>Journal of Crystal Growth</i> , 2011 , 324, 290-295 Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. <i>Applied Physics Letters</i> ,	1.6 1.6	6 6
98 97 96 95	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113 Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1532-1534 Fabrication and characterization of AlP-GaP core-shell nanowires. <i>Journal of Crystal Growth</i> , 2011 , 324, 290-295 Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. <i>Applied Physics Letters</i> , 1997 , 70, 2828-2830 Tuning of the single-particle relaxation time of a high mobility electron gas in a Ga0.25In0.75As/InP	1.6 1.6 3.4	6 6 6
98 97 96 95 94	Radial tunnel diodes based on InP/InGaAs core-shell nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 113 Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1532-1534 Fabrication and characterization of AlP-GaP core-shell nanowires. <i>Journal of Crystal Growth</i> , 2011 , 324, 290-295 Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. <i>Applied Physics Letters</i> , 1997 , 70, 2828-2830 Tuning of the single-particle relaxation time of a high mobility electron gas in a Ga0.25In0.75As/InP quantum well. <i>Applied Physics Letters</i> , 1997 , 70, 243-245 Correlation lengths in stacked InAs quantum dot systems studied by cross-sectional scanning	1.6 1.6 3.4	6 6 6 6

90	Photoexcitation of excitons in self-assembled quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 5046-504	18.4	6
89	Electron beam pre-patterning for site-control of self-assembled InAs quantum dots on Inp surfaces. <i>Journal of Electronic Materials</i> , 2001 , 30, 482-486	1.9	6
88	Magnetoluminescence of self-assembled InP dots of various sizes. <i>Physical Review B</i> , 1998 , 58, 2026-203	39 .3	6
87	Aerosol Fabrication of Nanocrystals of InP. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 1056-1059	1.4	6
86	In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering. <i>Nano Research</i> , 2019 , 12, 25-31	10	6
85	Surface smoothing and native oxide suppression on Zn doped aerotaxy GaAs nanowires. <i>Journal of Applied Physics</i> , 2019 , 125, 025303	2.5	6
84	Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes. <i>Nanotechnology</i> , 2017 , 28, 485205	3.4	5
83	Embedded sacrificial AlAs segments in GaAs nanowires for substrate reuse. <i>Nanotechnology</i> , 2020 , 31, 204002	3.4	5
82	Large-energy-shift photon upconversion in degenerately doped InP nanowires by direct excitation into the electron gas. <i>Nano Research</i> , 2013 , 6, 752-757	10	5
81	Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design. <i>Nano Letters</i> , 2017 , 17, 1121-1126	11.5	5
80	Gate tunable parallel double quantum dots in InAs double-nanowire devices. <i>Applied Physics Letters</i> , 2017 , 111, 233513	3.4	5
79	Phonon Transport and Thermoelectricity in Defect-Engineered InAs Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1404, 36		5
78	Investigations of InAs surface dots on InP. Applied Physics Letters, 2006, 89, 033111	3.4	5
77	Electric field effects in single semiconductor quantum dots observed by scanning tunneling luminescence. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 2344		5
76	The influence of confining wall profile on quantum interference effects in etched Ga0.25In0.75As/InP billiards. <i>Superlattices and Microstructures</i> , 2003 , 34, 179-184	2.8	5
75	Metalorganic vapor phase epitaxy-grown GaP/GaAs/GaP and GaAsP/GaAs/GaAsP n-type resonant tunnelling diodes. <i>Applied Physics Letters</i> , 2002 , 80, 1841-1843	3.4	5
74	Damage induced by plasma etching: On the correlation of results from photoluminescence and transport characterization techniques. <i>Applied Physics Letters</i> , 1995 , 66, 1403-1405	3.4	5
73	STM-based luminescence spectroscopy on single quantum dots. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 42, 82-87	3.1	5

72	Reflectance difference for in-situ characterization of surfaces and epitaxial growth of GaAs on (001) GaAs 1992,		5
71	Effects of hydrostatic pressure and phosphorus alloying on the Ag acceptor level in GaAs. <i>Physical Review B</i> , 1988 , 38, 8293-8295	3.3	5
70	Aerotaxy: gas-phase epitaxy of quasi 1D nanostructures. <i>Nanotechnology</i> , 2021 , 32, 025605	3.4	5
69	Template-assisted vapour-liquid-solid growth of InP nanowires on (001) InP and Si substrates. <i>Nanoscale</i> , 2020 , 12, 888-894	7.7	5
68	Nanowire photodetectors with embedded quantum heterostructures for infrared detection. <i>Infrared Physics and Technology</i> , 2019 , 96, 209-212	2.7	5
67	Hot-carrier separation in heterostructure nanowires observed by electron-beam induced current. <i>Nanotechnology</i> , 2020 , 31, 394004	3.4	4
66	InN quantum dots on GaN nanowires grown by MOVPE. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2014 , 11, 421-424		4
65	A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun 2015 ,		4
64	Manipulating InAs island sizes with chemical beam epitaxy growth on GaAs patterns. <i>Journal of Crystal Growth</i> , 1997 , 175-176, 747-753	1.6	4
63	AFM-based fabrication of lateral single-electron tunneling structures for elevated temperature operation. <i>Microelectronic Engineering</i> , 1997 , 35, 281-284	2.5	4
62	AFM-based manipulation of InAs nanowires. <i>Journal of Physics: Conference Series</i> , 2008 , 100, 052051	0.3	4
61	Selective etching of IIIIV nanowires for molecular junctions. <i>Microelectronic Engineering</i> , 2008 , 85, 1179-	11.81	4
60	Nanoscale tungsten aerosol particles embedded in GaAs. <i>Applied Physics Letters</i> , 2002 , 80, 2976-2978	3.4	4
59	Gated Tunneling Structures with Buried Tungsten Grating Adjacent to Semiconductor Heterostructures. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 3466-3469	1.4	4
58	Directional dependence of InAs island formation on patterned GaAs. <i>Journal of Crystal Growth</i> , 1996 , 164, 345-355	1.6	4
57	Surface and dislocation investigation of planar GaN formed by crystal reformation of nanowire arrays. <i>Physical Review Materials</i> , 2019 , 3,	3.2	4
56	Evidence of half-integer Shapiro steps originated from nonsinusoidal current phase relation in a short ballistic InAs nanowire Josephson junction. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
55	InP nanowire p-type doping via Zinc indiffusion. <i>Journal of Crystal Growth</i> , 2016 , 451, 18-26	1.6	3

54	Electron Tomography Reveals the Droplet Covered Surface Structure of Nanowires Grown by Aerotaxy. <i>Small</i> , 2018 , 14, e1801285	11	3
53	Magnetoresistance studies on CoAlOXAu and CoAlOXNiAu tunnel structures. <i>Applied Physics Letters</i> , 2008 , 93, 203107	3.4	3
52	Spectroscopic studies of random telegraph noise in small InP quantum dots in GaxIn1 P. <i>Physical Review B</i> , 2004 , 70,	3.3	3
51	Studies of self-assembled InP quantum dots in planar microcavities. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 69-70, 314-317	3.1	3
50	Indium enrichment in Ga1IIInxP self-assembled quantum dots. <i>Journal of Applied Physics</i> , 2000 , 88, 6378	8- <u>6.3</u> 81	3
49	Aerosol particles from metalorganic vapor phase epitaxy bubblers. <i>Journal of Crystal Growth</i> , 1994 , 145, 636-641	1.6	3
48	Semiconductor nanowire array for transparent photovoltaic applications. <i>Applied Physics Letters</i> , 2021 , 118, 191107	3.4	3
47	From nanoLEDs to the realization of RGB-emitting microLEDs. <i>Semiconductors and Semimetals</i> , 2021 , 106, 223-251	0.6	3
46	MOVPE-grown InAs/AlAs0.16Sb0.84/InAs and InAs/AlAs0.16Sb0.84/GaSb heterostructures. <i>Journal of Crystal Growth</i> , 2013 , 374, 43-48	1.6	2
45	GaAs-based Nanowires Studied by Low-Temperature Cathodoluminescence. <i>Journal of Physics:</i> Conference Series, 2011 , 326, 012042	0.3	2
44	Photoluminescence of Mg-doped m -plane GaN grown by MOCVD on bulk GaN substrates 2011,		2
43	Performance and design of vertical, ballistic, heterostructure field-effect transistors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 51, 76-80	3.1	2
42	Size-selected compound semiconductor quantum dots by nanoparticle conversion. <i>Nanotechnology</i> , 2007 , 18, 105306	3.4	2
41	Determining a temperature differential across a quantum dot. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 1605-1607	3	2
40	Cathodoluminescence studies of AlGaAs/GaAs core-shell nanowires 2005, 463-466		2
39	Ultrahigh vacuum scanning probe investigations of metal induced void formation in SiO2/Si(111). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002 , 20, 226		2
38	Bandgap modification in GaInAs/InP quantum well structures using switched ion channelling lithography. <i>Semiconductor Science and Technology</i> , 2001 , 16, 889-894	1.8	2
37	Fabrication and imaging of quantum-well wire structures 1992 , 1676, 154		2

36	Studies of Quantum Dots Fabricated by Combining Aerosol and Plasma Etching Techiques. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 283, 789		2	
35	Stability towards photoelectrochemical etching in Ga(As, P) alloys. <i>Journal of Applied Physics</i> , 1988 , 63, 530-532	2.5	2	
34	Optimization of GaN Nanowires Reformation Process by Metalorganic Chemical Vapor Deposition for Device-Quality GaN Templates. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900581	1.3	2	
33	Epitaxial Quantum Wires: Growth, Properties and Applications 2003 , 69-92		2	
32	Lattice Tilt Mapping using Full Field Diffraction X-Ray Microscopy at ID01 ESRF. <i>Microscopy and Microanalysis</i> , 2018 , 24, 128-129	0.5	1	
31	Photoluminescence study of Zn-doped wurtzite InP core-shell nanowiresa). <i>Applied Physics Letters</i> , 2013 , 102, 032105	3.4	1	
30	III-V and III-nitride nanowires for LED applications 2013 ,		1	
29	Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence 2013 ,		1	
28	Toward 3D Integration of 1D Conductors: Junctions of InAs Nanowires. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-5	3.2	1	
27	Low-temperature cathodoluminescence studies of GaAs nanowires in the SEM. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 012085	0.3	1	
26	Size-selected GaN and InN nanocrystals. <i>Journal of Aerosol Science</i> , 1997 , 28, S471-S472	4.3	1	
25	Exciton fine structure splitting in InP quantum dots in GaInP. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 295211	1.8	1	
24	Charging control of InPCaInP quantum dots by heterostructure design. <i>Applied Physics Letters</i> , 2004 , 85, 5043-5045	3.4	1	
23	Coupling between lateral modes in a vertical resonant tunneling structure. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 950-953	3	1	
22	Thin layers of GaInP, GaP and GaAsP in metalorganic vapour phase epitaxy-grown resonant tunnelling diodes. <i>Applied Surface Science</i> , 2002 , 190, 252-257	6.7	1	
21	Nanoimprint technology for fabrication of three-terminal ballistic junction devices in GaInAs/InP. <i>Microelectronic Engineering</i> , 2003 , 67-68, 196-202	2.5	1	
20	Photocurrent spectroscopy on self-assembled InAs quantum dots embedded in InP. <i>Microelectronics Journal</i> , 2005 , 36, 227-230	1.8	1	
19	Vertically-Stacked InAs Islands between GaAs Barriers Grown by Chemical Beam Epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 417, 117		1	

18	In Situ Diagnostics Of Epitaxial Growth Using Reflectance-Difference. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 47		1
17	Growth of InAs quantum dots on {110}-oriented cleaved GaAs surfaces. <i>Springer Proceedings in Physics</i> , 2001 , 383-384	0.2	1
16	Simulation of interference patterns in solid-state biprism devices. Solid-State Electronics, 2000, 44, 1275	5-11. 2 /80	О
15	Real-time monitoring of the reaction of H2S on GaAs. <i>Journal of Applied Physics</i> , 1993 , 74, 6146-6149	2.5	O
14	From InGaN pyramids to micro-LEDs characterized by cathodoluminescence. <i>Nano Express</i> , 2021 , 2, 014	0 <u></u> 96	O
13	Determination of the wurtzite content and orientation distribution of nanowire ensembles. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1206, 113901		
12	InP nanocrystals by aerotaxy method. <i>Journal of Aerosol Science</i> , 1997 , 28, S487-S488	4.3	
11	Series summation of fractal fluctuations in electron billiard arrays. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 34, 600-603	3	
10	Foreword - Special issue on nanoelectronics. <i>IEEE Transactions on Electron Devices</i> , 2003 , 50, 1821-1822	2.9	
9	Surviving conduction symmetries in non-linear response. <i>Superlattices and Microstructures</i> , 2003 , 34, 173-177	2.8	
8	Manipulating InAs Dots with GaAs Patterns: Effect of GaAs Buffer Layer Growth and Pattern Profiles. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 571, 319		
7	Luminescence Spectroscopy on Individual Nanostructures and Impurity Atoms Using Stm and Sem. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 375, 157		
6	Aerotaxy: A New Route to Formation of GaAs Nanocrystals from Ga Droplets. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 417, 123		
5	Strain Effects in InP Dots in between Barriers of GaInP. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 417, 233		
4	Optical Studies of InP / GaAs / InP Single Strained Layers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 281, 203		
3	Influence of Contacts and Applied Voltage on a Structure of a Single GaN Nanowire. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 9419	2.6	
2	Optical microprism cavities based on dislocation-free GaN. <i>Applied Physics Letters</i> , 2020 , 117, 231107	3.4	
1	Indium Arsenide (InAs) Nanowire Wrapped-Insulator-Gate Field-Effect Transistor29		