Rui Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124748/publications.pdf

Version: 2024-02-01

430874 395702 1,123 34 18 33 h-index citations g-index papers 34 34 34 1208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient removal of organic pollutants by a Co/N/S-doped yolk-shell carbon catalyst via peroxymonosulfate activation. Journal of Hazardous Materials, 2022, 421, 126726.	12.4	48
2	Influence of framework Al distribution in HZSM-5 channels on catalytic performance in the methanol to propylene reaction. Applied Catalysis A: General, 2022, 629, 118422.	4.3	15
3	Enhanced catalytic reduction of p-nitrophenol and azo dyes on copper hexacyanoferrate nanospheres decorated copper foams. Journal of Environmental Management, 2022, 314, 115075.	7.8	9
4	Direct synthesis of HZSM-5 zeolites with enhanced catalytic performance in the methanol-to-propylene reaction. Catalysis Today, 2022, 405-406, 299-308.	4.4	4
5	Carbon coated CoO plates/3D nickel foam: An efficient and readily recyclable catalyst for peroxymonosulfate activation. Separation and Purification Technology, 2022, 297, 121400.	7.9	8
6	Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets. Chinese Journal of Chemical Engineering, 2021, 33, 279-285.	3.5	4
7	A microstructured catalyst made of prussian blue analogues/copper foam for effective reduction of 4-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 197-204.	5.3	4
8	Enhanced adsorption and catalytic peroxymonosulfate activation by metal-free N-doped carbon hollow spheres for water depollution. Journal of Colloid and Interface Science, 2021, 591, 184-192.	9.4	15
9	One-pot green synthesis of Fe-ZSM-5 zeolite containing framework heteroatoms via dry gel conversion for enhanced propylene selectivity of catalytic cracking catalyst. Journal of Materials Science, 2021, 56, 18050-18060.	3.7	8
10	In situ growth of ZIF-8 onto porous carbons as an efficient adsorbent for malachite green removal. Journal of Porous Materials, 2020, 27, 1109-1117.	2.6	13
11	Yolk-shell ZIFs@SiO2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation. Journal of Environmental Management, 2020, 262, 110299.	7.8	29
12	Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction. Applied Catalysis A: General, 2020, 594, 117464.	4.3	49
13	The effect of co-feeding ethanol on a methanol to propylene (MTP) reaction over a commercial MTP catalyst. Applied Catalysis A: General, 2020, 592, 117429.	4.3	9
14	Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction. Microporous and Mesoporous Materials, 2020, 302, 110246.	4.4	21
15	Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 397, 125533.	12.7	94
16	Synthesis of ZSM-5 Zeolite Using Coal Fly Ash as an Additive for the Methanol to Propylene (MTP) Reaction. Catalysts, 2019, 9, 788.	3.5	8
17	Synthesis of thiol-functionalized mesoporous silica nanoparticles for adsorption of Hg2+ from aqueous solution. Journal of Sol-Gel Science and Technology, 2019, 89, 617-622.	2.4	19
18	Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water. Chemical Engineering Journal, 2019, 375, 122003.	12.7	83

#	Article	IF	Citations
19	Enhanced adsorption of Rhodamine B by magnetic nitrogen-doped porous carbon prepared from bimetallic ZIFs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 10-17.	4.7	45
20	Synthesis of silver decorated silica nanoparticles with rough surfaces as adsorbent and catalyst for methylene blue removal. Journal of Sol-Gel Science and Technology, 2019, 89, 754-763.	2.4	30
21	Cracking of n-heptane with activation of vanadium oxide based catalyst: effect of support and modification by K or P. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 295-306.	1.7	2
22	Hierarchical ZSM-5 zeolite designed by combining desilication and dealumination with related study of n-heptane cracking performance. Journal of Porous Materials, 2018, 25, 1743-1756.	2.6	35
23	Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction. Catalysis Communications, 2018, 109, 1-5.	3.3	32
24	Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B. Chemical Engineering Journal, 2018, 347, 640-647.	12.7	128
25	Effects of boron and fluorine modified \hat{I}^3 -Al2O3 with tailored surface acidity on catalytic ethanol dehydration to ethylene. Journal of Porous Materials, 2018, 25, 1105-1114.	2.6	10
26	Ultra-high adsorption capacity of MgO/SiO2 composites with rough surfaces for Congo red removal from water. Journal of Colloid and Interface Science, 2018, 510, 111-117.	9.4	83
27	Investigation on and industrial application of degrading of methanol feed in methanol to propylene process. Chinese Journal of Chemical Engineering, 2018, 26, 2102-2111.	3.5	8
28	In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous and Mesoporous Materials, 2018, 271, 68-72.	4.4	74
29	Two-stage glucose-assisted crystallization of ZSM-5 to improve methanol to propylene (MTP). Microporous and Mesoporous Materials, 2018, 270, 57-66.	4.4	37
30	High performance of H3BO3 modified USY and equilibrium catalyst with tailored acid sites in catalytic cracking. Microporous and Mesoporous Materials, 2017, 243, 319-330.	4.4	27
31	A high surface area mesoporous Î ³ -Al2O3 with tailoring texture by glucose template for ethanol dehydration to ethylene. Microporous and Mesoporous Materials, 2017, 241, 89-97.	4.4	34
32	In-situ growth of ZIF-8 on layered double hydroxide: Effect of Zn/Al molar ratios on their structural, morphological and adsorption properties. Journal of Colloid and Interface Science, 2017, 505, 206-212.	9.4	63
33	Influences of Reaction Temperature and Carrier Gas Flowâ€Rate on <i>n</i> â€Heptane Cracking over <scp>ZSM</scp> â€5 Catalyst Without and With Activation of <scp>V₂O₅</scp> , Bulletin of the Korean Chemical Society, 2017, 38, 1129-1133.	1.9	3
34	Preparation and Characterization of γ-Al ₂ O ₃ with Rich Brønsted Acid Sites and Its Application in the Fluid Catalytic Cracking Process. Journal of Physical Chemistry C, 2014, 118, 6226-6234.	3.1	72