
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8124718/publications.pdf Version: 2024-02-01

RAO YANG

#	Article	IF	CITATIONS
1	Experimental Study on Heat Transfer Enhancement by Using Textile Flap Oscillation. Heat Transfer Engineering, 2022, 43, 503-515.	1.2	1
2	Boron-Nitride Nanosheet-Based Thermal Barrier Coating for Micro-Combustor Performance Improvement. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	2
3	Influence of the Anions on the Interaction Energy between Water and Ionic Liquids. Chemical Engineering and Technology, 2022, 45, 266-274.	0.9	4
4	Surface microstructural engineering of silicone elastomers for high performance adhesive surface-enabled mechanical energy harvesters. Journal of Materials Chemistry A, 2022, 10, 9643-9654.	5.2	5
5	Rapid Pressureless Sintering of Glasses. Small, 2022, 18, e2107951.	5.2	20
6	Programmable heating and quenching for efficient thermochemical synthesis. Nature, 2022, 605, 470-476.	13.7	61
7	Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2021, 31, 2007254.	7.8	50
8	Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors. Composites Science and Technology, 2021, 204, 108645.	3.8	16
9	Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Composites Science and Technology, 2021, 207, 108729.	3.8	19
10	Aviation Turbine Fuel Thermal Conductivity: A Predictive Approach Using Entropy Scaling-Guided Machine Learning with Experimental Validation. ACS Omega, 2021, 6, 28579-28586.	1.6	4
11	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	11.1	427
12	An Energyâ€Efficient, Woodâ€Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. Small Methods, 2020, 4, 1900747.	4.6	53
13	Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11, 3836.	5.8	180
14	Recent advances in wearable textileâ€based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2020, 2, e12054.	6.8	63
15	A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526.	6.0	357
16	Wireless Multistimulusâ€Responsive Fabricâ€Based Actuators for Soft Robotic, Human–Machine Interactive, and Wearable Applications. Advanced Materials Technologies, 2020, 5, 2000341.	3.0	21
17	Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework. Nano Letters, 2020, 20, 5504-5512.	4.5	64
18	Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications. Nano Energy, 2020, 76, 105117.	8.2	18

#	Article	IF	CITATIONS
19	An Adhesive Surface Enables Highâ€Performance Mechanical Energy Harvesting with Unique Frequencyâ€Insensitive and Pressureâ€Enhanced Output Characteristics. Advanced Materials, 2020, 32, e1907948.	11.1	25
20	Equilibrium Thermodynamic Properties of Aqueous Solutions of Ionic Liquid 1-Ethyl-3-Methylimidazolium Methanesulfonate [EMIM][MeSO3]. Scientific Reports, 2020, 10, 3174.	1.6	6
21	Fireâ€Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Advanced Functional Materials, 2020, 30, 1909196.	7.8	94
22	Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS Nano, 2020, 14, 5194-5202.	7.3	105
23	Smart bionic morphing leg mannequin for pressure assessment of compression garment. Smart Materials and Structures, 2020, 29, 055041.	1.8	5
24	A "flared-end―gradient coil with outer-wall direct cooling for human brain imaging: A feasibility study. Magnetic Resonance Imaging, 2019, 62, 191-198.	1.0	1
25	Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and Cooling-Management. Advanced Fiber Materials, 2019, 1, 61-70.	7.9	56
26	Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced Functional Materials, 2019, 29, 1904282.	7.8	65
27	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28
28	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.	7.3	138
29	General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. ACS Nano, 2019, 13, 12653-12661.	7.3	101
30	Highly Sensitive and Durable Structured Fibre Sensors for Low-Pressure Measurement in Smart Skin. Sensors, 2019, 19, 1811.	2.1	5
31	Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy and Environmental Science, 2019, 12, 1558-1567.	15.6	482
32	Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	7.8	116
33	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	4.6	97
34	Upper limits for output performance of contact-mode triboelectric nanogenerator systems. Nano Energy, 2019, 57, 66-73.	8.2	26
35	Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system. Frontiers in Energy, 2019, 13, 193-203.	1.2	4
36	System-level Pareto frontiers for on-chip thermoelectric coolers. Frontiers in Energy, 2018, 12, 109-120.	1.2	8

#	Article	IF	CITATIONS
37	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
38	Highly Flexible, Largeâ€Area, and Facile Textileâ€Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting. Advanced Materials Technologies, 2018, 3, 1800016.	3.0	79
39	Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nature Energy, 2018, 3, 148-156.	19.8	96
40	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364
41	Plasmonic Wood for Highâ€Efficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701028.	10.2	701
42	Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy, 2018, 53, 383-390.	8.2	71
43	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	11.1	511
44	Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Advanced Functional Materials, 2017, 27, 1701450.	7.8	160
45	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	11.1	584
46	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.	7.3	261
47	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	11.1	494
48	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
49	Quantifying Energy Harvested from Contactâ€Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units. Advanced Energy Materials, 2017, 7, 1601569.	10.2	69
50	Integration of micro-contact enhanced thermoelectric cooler with a FEEDS manifold-microchannel system for cooling of high flux electronics. , 2017, , .		1
51	A Fully Verified Theoretical Analysis of Contactâ€Mode Triboelectric Nanogenerators as a Wearable Power Source. Advanced Energy Materials, 2016, 6, 1600505.	10.2	148
52	Monitoring elbow isometric contraction by novel wearable fabric sensing device. Smart Materials and Structures, 2016, 25, 125022.	1.8	19
53	Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. ACS Applied Materials & Interfaces, 2016, 8, 28838-28843.	4.0	53
54	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228

#	Article	IF	CITATIONS
55	Pathway and energetics of the thermally-induced structural changes in microemulsions. Applied Thermal Engineering, 2016, 108, 449-455.	3.0	6
56	Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 2016, 8, 19326-19333.	2.8	80
57	Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7, 10302.	5.8	145
58	Probing Nanoscale Thermal Transport in Surfactant Solutions. Scientific Reports, 2015, 5, 16040.	1.6	9
59	Experimental study of thermophysical properties and nanostructure of self-assembled water/polyalphaolefin nanoemulsion fluids. Advances in Mechanical Engineering, 2015, 7, 168781401558126.	0.8	9
60	Synthesis and Heat Transfer Performance of Phase Change Microcapsule Enhanced Thermal Fluids. Journal of Heat Transfer, 2015, 137, .	1.2	11
61	A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters, 2015, 15, 6149-6154.	4.5	313
62	Non-contact method for characterization of small size thermoelectric modules. Review of Scientific Instruments, 2015, 86, 084701.	0.6	3
63	Investigation on the reaction of iron powder mixture as a portable heat source for thermoelectric power generators. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1047-1053.	2.0	19
64	Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets. ACS Nano, 2014, 8, 3606-3613.	7.3	425
65	Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure. Applied Energy, 2014, 113, 1512-1518.	5.1	142
66	The Deformation Measurement and Analysis on Meso-Structure of Aluminum Foams During SHPB Test. Journal of Testing and Evaluation, 2014, 42, 621-628.	0.4	5
67	Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 734-743.	2.6	33
68	Synthesis and Characterization of Solid-State Phase Change Material Microcapsules for Thermal Management Applications. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	14
69	Thermophysical Properties and Pool Boiling Characteristics of Water-in-Polyalphaolefin Nanoemulsion Fluids. Journal of Heat Transfer, 2013, 135, .	1.2	9
70	Nanostructured phase-changeable heat transfer fluids. Nanotechnology Reviews, 2013, 2, 289-306.	2.6	9
71	Heat Transfer Performance of a Phase Change Microcapsule Fluid. , 2012, , .		2
72	Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method. Ultrasonics, 2011, 51, 485-488.	2.1	40

BAO YANG

#	Article	IF	CITATIONS
73	Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids. Nanoscale Research Letters, 2011, 6, 274.	3.1	26
74	Stressâ€induced nanostructures through laserâ€assisted scanning probe nanolithography. Scanning, 2010, 32, 327-335.	0.7	1
75	Mini-Contact Enhanced Thermoelectric Coolers for On-Chip Hot Spot Cooling. Heat Transfer Engineering, 2009, 30, 736-743.	1.2	49
76	<i>Review Article:</i> Thermoelectric Technology Assessment: Application to Air Conditioning and Refrigeration. HVAC and R Research, 2008, 14, 635-653.	0.9	38
77	Damage behaviors of fiber Bragg grating sensor in fabrication. Proceedings of SPIE, 2008, , .	0.8	0
78	Mini-Contact Enhanced Thermoelectric Cooling of Hot Spots in High Power Devices. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 432-438.	1.4	48
79	Corrections to "Mini-contact enhanced thermoelectric cooling of hot spots in high power devices". IEEE Transactions on Components and Packaging Technologies, 2007, 30, 889-889.	1.4	0
80	Temperature Dependent Thermal Conductivity of Nanorod-in-Fluorocarbon Nanofluids. , 2006, , .		0
81	Optimization of doping concentration for three-dimensional bulk silicon microrefrigerators. , 0, , .		1
82	Thermoelectric Mini-Contact Cooler For Hot-Spot Removal In High Power Devices. , 0, , .		6

 $\label{eq:construct} Thermoelectric \ {\tt Mini-Contact} \ {\tt Cooler} \ {\tt For} \ {\tt Hot-Spot} \ {\tt Removal} \ {\tt In} \ {\tt High} \ {\tt Power} \ {\tt Devices.} \ , 0, , .$ 82